Time filter

Source Type

Göteborg, Sweden

Chawade A.,Gothenburg University | Sikora P.,Gothenburg University | Brautigam M.,Gothenburg University | Larsson M.,Chalmers University of Technology | And 5 more authors.
BMC Plant Biology | Year: 2010

Background: Oat, Avena sativa is the sixth most important cereal in the world. Presently oat is mostly used as feed for animals. However, oat also has special properties that make it beneficial for human consumption and has seen a growing importance as a food crop in recent decades. Increased demand for novel oat products has also put pressure on oat breeders to produce new oat varieties with specific properties such as increased or improved β-glucan-, antioxidant- and omega-3 fatty acid levels, as well as modified starch and protein content. To facilitate this development we have produced a TILLING (Targeting Induced Local Lesions IN Genomes) population of the spring oat cultivar SW Belinda.Results: Here a population of 2600 mutagenised M2 lines, producing 2550 M3 seed lots were obtained. The M2 population was initially evaluated by visual inspection and a number of different phenotypes were seen ranging from dwarfs to giants, early flowering to late flowering, leaf morphology and chlorosis. Phloroglucinol/HCl staining of M3 seeds, obtained from 1824 different M2 lines, revealed a number of potential lignin mutants. These were later confirmed by quantitative analysis. Genomic DNA was prepared from the M2 population and the mutation frequency was determined. The estimated mutation frequency was one mutation per 20 kb by RAPD-PCR fingerprinting, one mutation per 38 kb by MALDI-TOF analysis and one mutation per 22.4 kb by DNA sequencing. Thus, the overall mutation frequency in the population is estimated to be one mutation per 20-40 kb, depending on if the method used addressed the whole genome or specific genes. During the investigation, 6 different mutations in the phenylalanine ammonia-lyase (AsPAL1) gene and 10 different mutations in the cellulose synthase-like (AsCslF6) β-glucan biosynthesis gene were identified.Conclusion: The oat TILLING population produced in this work carries, on average, hundreds of mutations in every individual gene in the genome. It will therefore be an important resource in the development of oat with specific characters. The population (M5) will be available for academic research via Nordgen http://www.nordgen.org as soon as enough seeds are obtained.[Genbank accession number for the cloned AsPAL1 is GQ373155 and GQ379900 for AsCslF6]. © 2010 Chawade et al; licensee BioMed Central Ltd. Source

Chawade A.,Gothenburg University | Chawade A.,Crop Tailor AB | Linden P.,Swedish University of Agricultural Sciences | Brautigam M.,Crop Tailor AB | And 8 more authors.
PLoS ONE | Year: 2012

Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding. © 2012 Chawade et al. Source

Sikora P.,Gothenburg University | Chawade A.,Crop Tailor AB | Larsson M.,Chalmers University of Technology | Olsson J.,Crop Tailor AB | Olsson O.,Gothenburg University
International Journal of Plant Genomics | Year: 2011

Plant mutagenesis is rapidly coming of age in the aftermath of recent developments in high-resolution molecular and biochemical techniques. By combining the high variation of mutagenised populations with novel screening methods, traits that are almost impossible to identify by conventional breeding are now being developed and characterised at the molecular level. This paper provides a comprehensive overview of the various techniques and workflows available to researchers today in the field of molecular breeding, and how these tools complement the ones already used in traditional breeding. Both genetic (Targeting Induced Local Lesions in Genomes; TILLING) and phenotypic screens are evaluated. Finally, different ways of bridging the gap between genotype and phenotype are discussed. Copyright © 2011 Per Sikora et al. Source

Chawade A.,Crop Tailor AB | Lindlof A.,Crop Tailor AB | Lindlof A.,University of Skovde | Olsson B.,University of Skovde | And 2 more authors.
PLoS ONE | Year: 2013

Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. © 2013 Chawade et al. Source

Discover hidden collaborations