Time filter

Source Type

Gan L.,Chongqing Three Gorges University | Wu X.,Crop Research Institute of Sichuan Academy of Agricultural science | Zhong Y.,Chongqing Three Gorges University
Plant Production Science | Year: 2015

Drought stress is a severe threat to high altitude hulless barley production, which causes oxidative damage, disturbs water relations and photosynthesis, while exogenously applied nitric oxide (NO) has the potential to alleviate these effects. In the present study, the role of NO in improving drought tolerance of hulless barley was evaluated. At the three leaf stage, sodium nitroprusside (SNP), a NO donor, was applied at 50, 100 and 150 μmol l–1 under drought stress, the controls, were kept at full feld water capacity without NO treatment. The results showed that drought stress seriously reduced the hulless barley growth and physiological attributes, but NO application alleviated the stress effects. Drought tolerance in hulless barley was strongly related to the maintenance of water content and enhanced capacity of antioxidants, improved stability of cellular membranes and enhanced photosynthetic capacity, plausibly by signaling action of NO. Among the NO treatments, 100 μmol l–1 SNP was the most effective.This work was supported by the Chongqing Natural Science Foundation of China (cstc2012jjA1175). © 2014, Crop Science Society of Japan. All right reserved.

Chen J.,Nanjing Agricultural University | Liu X.,Nanjing Agricultural University | Zheng J.,Nanjing Agricultural University | Zhang B.,Nanjing Agricultural University | And 7 more authors.
Applied Soil Ecology | Year: 2013

Biochar's role on greenhouse gas emission and plant growth has been well addressed. However, there have been few studies on changes in soil microbial community and activities with biochar soil amendment (BSA) in croplands. In a field experiment, biochar was amended at rates of 0, 20 and 40tha-1 (C0, C1 and C2, respectively) in May 2010 before rice transplantation in a rice paddy from Sichuan, China. Topsoil (0-15cm) was collected from the rice paddy while rice harvest in late October 2011. Soil physico-chemical properties and microbial biomass carbon (MBC) and nitrogen (MBN) as well as selected soil enzyme activities were determined. Based on 16S rRNA and 18S rRNA gene, bacterial and fungal community structure and abundance were characterized using terminal-restriction fragment length polymorphism (T-RFLP) combined with clone library analysis, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR assay (qPCR). Contents of SOC and total N and soil pH were increased but bulk density decreased significantly. While no changes in MBC and MBN, gene copy numbers of bacterial 16S rRNA was shown significantly increased by 28% and 64% and that of fungal 18S rRNA significantly decreased by 35% and 46% under BSA at 20 and 40tha-1 respectively over control. Moreover, there was a significant decrease by 70% in abundance of Methylophilaceae and of Hydrogenophilaceae with an increase by 45% in Anaerolineae abundance under BSA at 40tha-1 over control. Whereas, using sequencing DGGE bands of fungal 18S rRNA gene, some bands affiliated with Ascomycota and Glomeromycota were shown inhibited by BSA at rate of 40tha-1. Significant increases in activities of dehydrogenase, alkaline phosphatases while decreased β-glucosidase were also observed under BSA. The results here indicated a shift toward a bacterial dominated microbial community in the rice paddy with BSA. © 2013.

Li X.,CAS Kunming Institute of Botany | Li X.,University of Chinese Academy of Sciences | Song K.,CAS Kunming Institute of Botany | Song K.,Crop Research Institute of Sichuan Academy of Agricultural science | And 2 more authors.
International Journal of Molecular Sciences | Year: 2011

Erigeron breviscapus (Vant.) Hand.-Mazz. (Asteraceae) is a species endemic to southwestern China and an important traditional Chinese herb for cardiovascular and cerebral vessel diseases. Applying a modified biotin-streptavidin capture method, 11 microsatellite loci were discovered. Polymorphism of each locus was assessed in 24 individuals collected from five wild populations. The number of alleles per locus ranged from 2 to 7, with an average of 4.273. The observed (HO) and expected (HE) heterozygosities varied from 0.250 to 0.958 and from 0.337 to 0.786, respectively. Over half of these loci were successfully amplified in two congeneric species. The developed microsatellite markers will be useful for future population genetics and conservation studies, as well as accurate identification of different varieties. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Tang Y.L.,Crop Research Institute of Sichuan Academy of Agricultural science | Li C.S.,Crop Research Institute of Sichuan Academy of Agricultural science | Yang W.Y.,Crop Research Institute of Sichuan Academy of Agricultural science | Wu Y.Q.,Sichuan Agricultural University | And 6 more authors.
Crop and Pasture Science | Year: 2016

Multi-environment trials were conducted to investigate the quality potential of synthetic-derived cultivars (SDCs) and non-synthetic-derived cultivars (NSCs) in south-western China. The environmental effect was greater than genotypic for most protein quantity and quality parameters. The genotype effect was greater for falling number and the parameters from the rapid visco analyser (RVA). In terms of group means, grain protein content, wet gluten content, falling number, and RVA parameters were all significantly lower in SDCs than NSCs. No differences in the parameters reflecting dough strength (Zeleny sedimentation volume and farinograph parameters) were found between the two groups. Significant differences existed within each group, and the degree of variation was especially great in SDCs, among which Chuanmai 104 performed well in various quality parameters. Germination index at physiological maturity varied greatly among cultivars, with the lowest being Chuanmai 104, and the SDCs significantly lower than the NSCs. Although delayed harvest resulted in a significant reduction in falling number, partial SDCs such as Chuanmai 104 and Chuanmai 42 expressed relatively small reductions. In summary, SDCs exhibit a higher degree of variation in quality parameters; these findings indicate their large potential for breeding high-quality cultivars in south-western China. © CSIRO 2016.

Wu X.,Crop Research Institute of Sichuan Academy of Agricultural science | Tang Y.,Crop Research Institute of Sichuan Academy of Agricultural science | Li C.,Crop Research Institute of Sichuan Academy of Agricultural science | Wu C.,Crop Research Institute of Sichuan Academy of Agricultural science | Huang G.,Crop Research Institute of Sichuan Academy of Agricultural science
Plant Production Science | Year: 2015

The agronomic and physiological effects of waterlogging in winter wheat were examined at four growth stages in the 2011/2012 and 2012/2013 seasons. In both seasons, the greatest yield penalties occurred by waterlogging at the tillering stage (10%-15% decrease), followed by the jointing stage; however, waterlogging at the grain filling stage had less effect on the yield. The lower grain yield caused by waterlogging at the tillering stage was primarily reflected in reductions in spike and grain numbers per m2. Waterlogging at the jointing and booting stages reduced grain weight through reduced dry matter translocation. In addition, waterlogging at the tillering stage significantly reduced chlorophyll content and thus photosynthetic capacity, resulting in a lower Fv/Fm ratio, apparent electron transport rate (ETR), effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP). However, waterlogging at the grain filling stage improved the leaf photosynthetic capacity and grain yield. We found that the tillering stage was most the susceptible to waterlogging in wheat; therefore, the maintenance of photosynthetic performance after anthesis could be a reasonable strategy for increasing grain yield. © 2015, Crop Science Society of Japan. All rights reserved.

Discover hidden collaborations