Time filter

Source Type

Peharda M.,Croatian Institute Of Oceanography And Fisheries
Acta Adriatica

Hydraulic dredge surveys of bivalve communities in the Croatian part of the Adriatic Sea were conducted from the Island of Rab in the north to the river Neretva estuary in the south during 2007 and 2008. The main objective of the study was to describe distribution and community structure of bivalves on soft sediments along the eastern Adriatic, primarily focusing on commercially important species in five main bivalve harvesting areas. A total of 105 hydraulic dredge samples were collected at depths ranging from 1 to 11 m. Sampled bivalves were separated in the field and frozen for later laboratory analysis that included species identification, abundance and biomass determination. Live specimens of 54 bivalve taxa were collected during this study, while 87 taxa were represented by empty shells. Shells of the non-indigenous bivalve Anadara demiri were recorded for the first time in the Croatian part of the Adriatic Sea. In terms of biomass and abundance the dominant species were Acanthocardia tuberculata, Callista chione, Chamelea gallina, Glycymeris bimaculata, G. glycymeris, G. violascens, Laevicardium oblongum, Modiolus barbatus, Mytilus galloprovincialis, Ostrea edulis and Venus verrucosa. Statistically significant differences were noted in bivalve communities in the five main sampling areas including the island of Rab, Pag bay, Kaštela bay, Cetina estuary and Neretva estuary. Source

Vilibic I.,Croatian Institute Of Oceanography And Fisheries | Mihanovic H.,Hydrographic Institute of the Republic of Croatia
Geophysical Research Letters

Pressure, temperature, and salinity data collected during the winter of 2011/2012 by an Argo profiling float over the Adriatic shelf were used to document the dense water formation and subsequent bottom density current (BDC) normally occurring along the shelf slope. The float was advected to the Jabuka Pit and neighboring shallow area (<275 m) after October 2010. The parking depth was set to approximately 150 m, enabling the float to mostly follow the firstOnlineseabed between December 2011 and July 2012. The profiler measured strong spatial-temporal changes in the BDC thickness (from a few to about 50 m) and the bottom density (between 29.46 and 29.88 kg/m3). These observations show that an Argo float has the capability to observe a bottom density current and suggest that it would be possible to systematically use such floats to investigate these processes on coastal shelves. © 2013. American Geophysical Union. All Rights Reserved. Source

Agency: Cordis | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2012-1.1.12. | Award Amount: 10.87M | Year: 2013

EUROFLEETS2 is the enhancement of EUROFLEETS1, with the aim of developing a new pan-European distributed infrastructure with common strategic vision and coordinated access to Research Vessels (RVs) and marine equipment. EUROFLEETS2 will furthermore undertake specific actions to consolidate research fleets organization, methodology and tools through operational initiatives (like virtual fleets) leading to more interoperable and cost effective European research fleets. EUROFLEETS2 main objectives are: * Promotion of operational coordination and integration of RVs. Modern European RVs are made accessible under EUROFLEETS2 (8 of Ocean/Global class and 14 of Regional class) plus 6 mobile pieces of equipment. Further integration is proposed within an innovative multi-platform experiment. The corresponding call aims to identify a flagship proposal, with a proven scientific excellence; * Completion of strategic perspectives for the European research fleets with a polar component; * Promotion of exchanges of mobile equipment on board European RVs to foster interoperability; * Enhancing the impact of research fleets on innovation by fostering the involvement of industry in specific activities, both as end user (e.g. development and testing of new equipment or deep-sea exploration for new resources) or as supplier; * Development of new training actions including a pilot floating university, and of new technological innovations to be widely used on board European RVs; * Making a new step towards a long term sustainable group of European Regional RVs with a view to applying for its insertion into the ESFRI roadmap.

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2013-ITN | Award Amount: 3.12M | Year: 2013

Proposal for a multi-partner ITN (ARAMACC: Annually Resolved Archives of MArine Climate Change) based around the newly emerging field of molluscan sclerochronology/climatology. ARAMACC is a network of eight Full Participants and three Associated Partners. Training will be provided to ten ESRs and one ER. ARAMACC science will consist of four work packages, which will address (1) the construction of a network of shell-based chronologies for the climatically important NE Atlantic region; (2) the use of data from these and other existing chronologies for multicentennial model comparisons and to constrain model predictions on decadal timescales; (3) the environmental drivers of shell growth and growth check formation; and (4) novel applications of the shell material, including the production of baseline environmental data for commercial and regulatory organizations. The aim of ARAMACC training is to develop a cadre of highly-trained scientists with a range of overlapping and cross-disciplinary skills who are fully committed to the use of high-resolution shell-based archives to increase our understanding of the part played by the oceans in the Earths complex climate system and who are able to apply their skills to the study of past and future climate change and to the sustainable and fully informed use of the shelf seas for infrastructure projects and other commercial applications.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: SFS-10a-2014 | Award Amount: 8.10M | Year: 2015

European aquaculture production provides direct employment to 80,000 people and a 3-billion annual turnover. Parasites cause severe disease outbreaks and high economic losses in finfish aquaculture. The overarching goal of ParaFishControl is to increase the sustainability and competitiveness of European Aquaculture by improving understanding of fish-parasite interactions and by developing innovative solutions and tools for the prevention, control and mitigation of the major parasites affecting Atlantic salmon, rainbow trout, common carp, European sea bass, gilthead sea bream and turbot. To achieve these objectives, ParaFishControl brings together a multidisciplinary consortium comprising 30 partners possessing world-leading, complementary, cross-cutting expertise and drawn from public and private research organisations, and the aquaculture industry. The consortium has access to excellent research facilities, diverse biological resources including host-parasite models, and state-of-the-art vaccinology, genomic, proteomic and transcriptomic technologies. The project will: 1) generate new scientific knowledge on key fish parasites, including genomics, life-cycle, invasion strategy and host-parasite interaction data, with special emphasis on host immunity, pathogen virulence and immunomodulation, providing a scientific basis for improved prophylaxis; 2) determine the transfer of parasites between farmed and wild host populations; 3) develop a wide range of novel prophylactic measures, including vaccines and functional feeds; 4) provide a range of advanced or alternative treatments for parasitic diseases; 5) develop cost-effective, specific and sensitive diagnostic tools for key parasitic diseases; 6) assess the risk factors involved in the emergence, transmission and pathogenesis of parasitic diseases; 7) map the zoonotic risks due to fish helminths and; 8) provide a catalogue of good husbandry practices to obtain safe and high-quality fish products.

Discover hidden collaborations