Entity

Time filter

Source Type

Trenton, TN, United States

Miorandi D.,CREATE-NET
Nano Communication Networks | Year: 2011

In this paper we present a stochastic model for molecular communication, which accounts for particle dynamics and noise. Differently from existing approaches, we consider that molecules carrying information may interact with the transmission medium. These interactions are modelled by means of absorption, duplication and spontaneous emission phenomena. Using tools from stochastic processes we provide a complete statistical characterization of the evolution over time of the number of molecules present in the transmission medium. The model is applied to the study of flow-based and diffusion-based molecular communication. © 2011 Elsevier Ltd. Source


Altman E.,French Institute for Research in Computer Science and Automation | De Pellegrini F.,CREATE-NET
IEEE/ACM Transactions on Networking | Year: 2011

Delay-tolerant ad hoc networks leverage the mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease delivery delay, the information to be delivered is replicated in the network. Our objective in this paper is to study a class of replication mechanisms that include coding in order to improve the probability of successful delivery within a given time limit. We propose an analytical approach that allows to quantify tradeoffs between resources and performance measures (energy and delay). We study the effect of coding on the performance of the network while optimizing parameters that govern routing. Our results, based on fluid approximations, are compared to simulations that validate the model. © 2010 IEEE. Source


Patent
Create-Net | Date: 2011-05-13

Currently available network virtualization solutions are either specifically tailored for wired networks composed of nodes with very large processing power and storage space. The present invention relates to a novel virtualization framework specifically tailored to wireless networks. Such framework provides Wireless Internet Service Providers (WISP) with an effective virtualization solution, allowing production traffic to share part of the available network resources with a variable number of network slices where novel solutions, such as new routing protocols, services or network operation tools, can be experimentally tested in a severely controlled yet realistic environment.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-39-2015 | Award Amount: 2.80M | Year: 2016

The WAZIUP project, namely the Open Innovation Platform for IoT-Big Data in Sub-Saharan Africa is a collaborative research project using cutting edge technology applying IoT and Big Data to improve the working conditions in the rural ecosystem of Sub-Saharan Africa. First, WAZIUP operates by involving farmers and breeders in order to define the platform specifications in focused validation cases. Second, while tackling challenges which are specific to the rural ecosystem, it also engages the flourishing ICT ecosystem in those countries by fostering new tools and good practices, entrepreneurship and start-ups. Aimed at boosting the ICT sector, WAZIUP proposes solutions aiming at long term sustainability. The consortium of WAZIUP involves 7 partners from 4 African countries and partners from 5 EU countries combining business developers, technology experts and local Africa companies operating in agriculture and ICT. The project involves also regional hubs with the aim to promote the results to the widest base in the region.


Patent
Create-Net | Date: 2011-05-13

Currently available network virtualization solutions are either specifically tailored for wired networks composed of nodes with very large processing power and storage space. The present invention relates to a novel virtualization framework specifically tailored to wireless networks. Such framework provides Wireless Internet Service Providers (WISP) with an effective virtualization solution, allowing production traffic to share part of the available network resources with a variable number of network slices where novel solutions, such as new routing protocols, services or network operation tools, can be experimentally tested in a severely controlled yet realistic environment.

Discover hidden collaborations