Trondheim, Norway
Trondheim, Norway

Time filter

Source Type

Research and Markets has announced the addition of the "Perovskite Photovoltaics 2016-2026: Technologies, Markets, Players" report to their offering. The report will also benchmark other photovoltaic technologies including crystalline silicon, GaAs, amorphous silicon, CdTe, CIGS, CZTS, DSSC, OPV and quantum dot PV. Cost analysis is provided for future perovskite solar cells. A 10-year market forecast is given based on different application segments. Possible fabrication methods and material choices are discussed as well. With so many improvements, perovskite solar cell technology is still in the early stages of commercialization compared with other mature solar technologies as there are a number of concerns remaining such as stability, toxicity of lead in the most popular perovskite materials, scaling-up, etc. Crystalline silicon PV modules have fallen from $76.67/W in 1977 to $0.4-0.5/W with fair efficiency in early 2015. As one of the top ten science breakthroughs of 2013, perovskite solar cells have shown potential both in the rapid efficiency improvement (from 2.2% in 2006 to the latest record 20.1% in 2014) and in cheap material and manufacturing costs. Perovskite solar cells have attracted tremendous attention from the likes of DSSC and OPVs with greater potential. Many companies and research institutes that focused on DSSCs and OPVs now transfer attention to perovskites with few research institutes remaining exclusively committed to OPVs and DSSCs. Perovskite solar cells are a breath of fresh air into the emerging photovoltaic technology landscape. They have amazed with an incredibly fast efficiency improvement, going from just 2% in 2006 to over 20.1% in 2015. These questions will be answered in this report: - Will perovskite solar cells be able to compete with silicon solar cells which dominate the PV market now? - What is the status of the technology? - What are the potential markets? - Who is working on it?  The market forecast is provided based on the following applications: - Smart glass - BIPV - Outdoor furniture - Perovskites in tandem solar cells - Utility - Portable devices - Third world/developing countries for off-grid applications - Automotive - Others Key Topics Covered: 1. Overview 2. Technology Benchmarking Of Different Pv Technologies 3. Cost Analysis 4. Commercial Opportunities And Market Forecast 5. Background Of Perovskite Solar Cells 6. Architecture And Fabrication 7. Material Options 8. Player Profiles 9. Companies Currently Working On Perovskites 10. Companies Working On Other Emerging Pvs 11. Abbreviations Companies Mentioned - Alta Devices - Armor - Belectric - CSIRO - CrayoNano AS - Crystalsol GmbH - DisaSolar - Dyesol - Eight19 Ltd - Exeger - Flexink - Fraunhofer ISE - FrontMaterials - G24 Power Ltd - Heliatek GmbH - NanoGram Corp - National Research Council Canada - New Energy Technologies Inc - Oxford Photovoltaics - Polyera Corporation - Raynergy Tek Incorporation - Saule Technologies - SolarPrint Ltd - Solaronix - Sumitomo Chemical and CDT - Ubiquitous Energy Inc - VTT Technical Research Centre of Finland - Xiamen Weihua Solar Co.,Ltd. For more information about this report visit http://www.researchandmarkets.com/research/3lstml/perovskite Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900 U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716


Home > Press > GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization Abstract: The 2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition (www.graphenecanadaconf.com) will take place in Montreal (Canada): 18-20 October, 2016. Graphene Canada 2016 attractive and promising program features 40 high-level Keynote and Invited speakers from all over the world, with a perfect mixture of fundamental research and industrial perspective. Top industry leaders will discuss recent advances in technology developments and business opportunities in graphene commercialization. Not to be missed: - The plenary session - An industrial forum with focus on Graphene Commercialization (Abalonyx, Alcereco Inc, AMO GmbH, Avanzare, AzTrong Inc, Bosch GmbH, China Innovation Alliance of the Graphene Industry (CGIA), Durham University & Applied Graphene Materials, Fujitsu Laboratories Ltd., Hanwha Techwin, Haydale, IDTechEx, North Carolina Central University & Chaowei Power Ltd, NTNU&CrayoNano, Phantoms Foundation, Southeast University, The Graphene Council, University of Siegen, University of Sunderland and University of Waterloo) - Extensive thematic workshops in parallel (Materials & Devices Characterization, Chemistry, Biosensors & Energy and Electronic Devices) - A significant exhibition (Abalonyx, Go Foundation, Grafoid, Group NanoXplore Inc., Raymor | Nanointegris and Suragus GmbH) The GrapheneCanada 2016 will bring together, from a global perspective, scientists, researchers, end-users, industry, policy makers and investors in an environment of cooperation and sharing towards the challenges of Graphene commercialization. Organisers: Phantoms Foundation www.phantomsnet.net Catalan Institute of Nanoscience and Nanotechnology - ICN2 (Spain) | CEMES/CNRS (France) | GO Foundation (Canada) | Grafoid Inc (Canada) | Graphene Labs - IIT (Italy) | McGill University (Canada) | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal (Canada) For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


PubMed | CrayoNano AS, University of New South Wales, Max Planck Institute for the Science of Light and Norwegian University of Science and Technology
Type: Journal Article | Journal: Nano letters | Year: 2016

The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.


Fauske V.T.,Norwegian University of Science and Technology | Huh J.,Norwegian University of Science and Technology | Divitini G.,University of Cambridge | Dheeraj D.L.,CrayoNano AS | And 5 more authors.
Nano Letters | Year: 2016

Here we report on the heat-induced solid-state replacement of GaAs by Au in nanowires. Such replacement of semiconductor nanowires by metals is envisioned as a method to achieve well-defined junctions within nanowires. To better understand the mechanisms and dynamics that govern the replacement reaction, we performed in situ heating studies using high-resolution scanning transmission electron microscopy. The dynamic evolution of the phase boundary was investigated, as well as the crystal structure and orientation of the different phases at reaction temperatures. In general, the replacement proceeds one GaAs(111) bilayer at a time, and no fixed epitaxial relation could be found between the two phases. The relative orientation of the phases affects the replacement dynamics and can induce growth twins in the Au nanowire phase. In the case of a limited Au supply, the metal phase can also become liquid. © 2016 American Chemical Society.


Munshi A.M.,Norwegian University of Science and Technology | Dheeraj D.L.,Norwegian University of Science and Technology | Fauske V.T.,Norwegian University of Science and Technology | Kim D.C.,Norwegian University of Science and Technology | And 9 more authors.
Nano Letters | Year: 2014

We report on the epitaxial growth of large-area position-controlled self-catalyzed GaAs nanowires (NWs) directly on Si by molecular beam epitaxy (MBE). Nanohole patterns are defined in a SiO2 mask on 2 in. Si wafers using nanoimprint lithography (NIL) for the growth of positioned GaAs NWs. To optimize the yield of vertical NWs the MBE growth parameter space is tuned, including Ga predeposition time, Ga and As fluxes, growth temperature, and annealing treatment prior to NW growth. In addition, a non-negligible radial growth is observed with increasing growth time and is found to be independent of the As species (i.e., As2 or As4) and the growth temperatures studied. Cross-sectional transmission electron microscopy analysis of the GaAs NW/Si substrate heterointerface reveals an epitaxial growth where NW base fills the oxide hole opening and eventually extends over the oxide mask. These findings have important implications for NW-based device designs with axial and radial p-n junctions. Finally, NIL positioned GaAs/AlGaAs core-shell heterostructured NWs are grown on Si to study the optical properties of the NWs. Room-temperature photoluminescence spectroscopy of ensembles of as-grown core-shell NWs reveals uniform and high optical quality, as required for the subsequent device applications. The combination of NIL and MBE thereby demonstrates the successful heterogeneous integration of highly uniform GaAs NWs on Si, important for fabricating high throughput, large-area position-controlled NW arrays for various optoelectronic device applications. © 2014 American Chemical Society.


Signorello G.,IBM | Lortscher E.,IBM | Khomyakov P.A.,IBM | Karg S.,IBM | And 5 more authors.
Nature Communications | Year: 2014

Many efficient light-emitting devices and photodetectors are based on semiconductors with, respectively, a direct or indirect bandgap configuration. The less known pseudodirect bandgap configuration can be found in wurtzite (WZ) semiconductors: here electron and hole wave-functions overlap strongly but optical transitions between these states are impaired by symmetry. Switching between bandgap configurations would enable novel photonic applications but large anisotropic strain is normally needed to induce such band structure transitions. Here we show that the luminescence of WZ GaAs nanowires can be switched on and off, by inducing a reversible direct-to-pseudodirect band structure transition, under the influence of a small uniaxial stress. For the first time, we clarify the band structure of WZ GaAs, providing a conclusive picture of the energy and symmetry of the electronic states. We envisage a new generation of devices that can simultaneously serve as efficient light emitters and photodetectors by leveraging the strain degree of freedom. © 2014 Macmillan Publishers Limited. All rights reserved.


Hoiaas I.M.,Norwegian University of Science and Technology | Kim D.C.,Norwegian University of Science and Technology | Kim D.C.,CrayoNano AS | Weman H.,Norwegian University of Science and Technology | Weman H.,CrayoNano AS
Applied Physics Letters | Year: 2016

We report the fabrication of a Si(111) crystalline thin film on graphene by the aluminum-induced crystallization (AIC) process. The AIC process of Si(111) on graphene is shown to be enhanced compared to that on an amorphous SiO2 substrate, resulting in a more homogeneous Si(111) thin film structure as revealed by X-ray diffraction and atomic force microscopy measurements. Raman measurements confirm that the graphene is intact throughout the process, retaining its characteristic phonon spectrum without any appearance of the D peak. A red-shift of Raman peaks, which is more pronounced for the 2D peak, is observed in graphene after the crystallization process. It is found to correlate with the red-shift of the Si Raman peak, suggesting an epitaxial relationship between graphene and the adsorbed AIC Si(111) film with both the graphene and Si under tensile strain. © 2016 Author(s).


PubMed | CrayoNano AS and Norwegian University of Science and Technology
Type: Journal Article | Journal: Journal of microscopy | Year: 2016

For the development of electronic nanoscale structures, feedback on its electronic properties is crucial, but challenging. Here, we present a comparison of various in situ methods for electronically probing single, p-doped GaAs nanowires inside a scanning electron microscope. The methods used include (i) directly probing individual as-grown nanowires with a sharp nano-manipulator, (ii) contacting dispersed nanowires with two metal contacts and (iii) contacting dispersed nanowires with four metal contacts. For the last two cases, we compare the results obtained using conventional ex situ litho-graphy contacting techniques and by in situ, direct-write electron beam induced deposition of a metal (Pt). The comparison shows that 2-probe measurements gives consistent results also with contacts made by electron beam induced deposition, but that for 4-probe, stray deposition can be a problem for shorter nanowires. This comparative study demonstrates that the preferred in situ method depends on the required throughput and reliability.


PubMed | CrayoNano AS and University of Cambridge
Type: Journal Article | Journal: Nano letters | Year: 2016

Here we report on the heat-induced solid-state replacement of GaAs by Au in nanowires. Such replacement of semiconductor nanowires by metals is envisioned as a method to achieve well-defined junctions within nanowires. To better understand the mechanisms and dynamics that govern the replacement reaction, we performed in situ heating studies using high-resolution scanning transmission electron microscopy. The dynamic evolution of the phase boundary was investigated, as well as the crystal structure and orientation of the different phases at reaction temperatures. In general, the replacement proceeds one GaAs(111) bilayer at a time, and no fixed epitaxial relation could be found between the two phases. The relative orientation of the phases affects the replacement dynamics and can induce growth twins in the Au nanowire phase. In the case of a limited Au supply, the metal phase can also become liquid.

Loading CrayoNano AS collaborators
Loading CrayoNano AS collaborators