Time filter

Source Type

Perth, Australia

Claes P.,Catholic University of Leuven | Claes P.,University of Melbourne | Daniels K.,Catholic University of Leuven | Walters M.,Cranio Maxillo Facial Unit | And 4 more authors.
Theoretical Biology and Medical Modelling | Year: 2012

Background: The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. Methods. A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. Results: We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. Conclusion: The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research. © 2012 Claes et al; licensee BioMed Central Ltd. Source

Claes P.,Medical Imaging Research Center | Claes P.,University of Melbourne | Walters M.,Cranio Maxillo Facial Unit | Clement J.,University of Melbourne
International Journal of Oral and Maxillofacial Surgery | Year: 2012

The capacity to process three-dimensional facial surfaces to objectively assess outcomes of craniomaxillofacial care is urgently required. Available surface registration techniques depart from conventional facial anthropometrics by not including anatomical relationship in their analysis. Current registrations rely on the manual selection of areas or points that have not moved during surgery, introducing subjectivity. An improved technique is proposed based on the concept of an anthropometric mask (AM) combined with robust superimposition. The AM is the equivalent to landmark definitions, as used in traditional anthropometrics, but described in a spatially dense way using (∼10.000) quasi-landmarks. A robust superimposition is performed to align surface images facilitating accurate measurement of spatial differences between corresponding quasi-landmarks. The assessment describes magnitude and direction of change objectively and can be displayed graphically. The technique was applied to three patients, without any modification and prior knowledge: a 4-year-old boy with Treacher-Collins syndrome in a resting and smiling pose; surgical correction for hemimandibular hypoplasia; and mandibular hypoplasia with staged orthognathic procedures. Comparisons were made with a reported closest-point (CP) strategy. Contrasting outcomes were found where the CP strategy resulted in anatomical implausibility whilst the AM technique was parsimonious to expected differences. © 2011 International Association of Oral and Maxillofacial Surgeons. Source

Claes P.,Catholic University of Leuven | Claes P.,University of Melbourne | Claes P.,Future Health | Walters M.,Cranio Maxillo Facial Unit | And 9 more authors.
Journal of Anatomy | Year: 2012

Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial representation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimorphism is only tested as a difference of sample means, which is statistically the same as a difference in population location only. Within the framework of geometric morphometrics, we partition facial shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multiple aspects, by examining (i) population location differences as well as differences in population variance-covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high number of variables to observations necessitating the implementation of permutational and computationally feasible statistics. In a sample of gender-matched young adults (18-25years) with self-reported European ancestry, we found greater variation in male faces than in women for all measurements. Statistically significant sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymmetry), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmental biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth patterns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society. Source

Walters M.,Cranio Maxillo Facial Unit | Claes P.,Catholic University of Leuven | Kakulas E.,Cranio Maxillo Facial Unit | Clement J.G.,University of Melbourne
International Journal of Oral and Maxillofacial Surgery | Year: 2013

Hemimandibular hyperplasia (HH) and hemimandibular elongation (HE) anomalies present with facial asymmetry and deranged occlusion. Currently, diagnosis and assessment of the facial dysmorphology is based on subjective clinical evaluation, supported by radiological scans. Advancements in objective assessments of facial asymmetry from three-dimensional (3D) facial scans facilitate a re-evaluation of the patterns of facial dysmorphology. Automated, robust and localised asymmetry assessments were obtained by comparing a 3D facial scan with its reflected image using a weighted least-squares superimposition. This robust superimposition is insensitive to severe asymmetries. This provides an estimation of the anatomical midline and a spatially dense vector map visualising localised directional differences between the left and right hemifaces. Analysis was conducted on three condylar hyperplasia phenotypes confirmed by clinical and CT evaluation: HH; HE; and hybrid phenotype. The midline extraction revealed chin point displacements in all cases. The upper lip philtrum and nose tip deviation to the affected side and a marked asymmetry of the mid face was noted in cases involving HE. Downward and medial rotation of the mandible with minor involvement of the midface was seen in the HH associated deformity. The hybrid phenotype case exhibited asymmetry features of both HH and HE cases. © 2012 International Association of Oral and Maxillofacial Surgeons. Source

Godinho M.J.,University of Western Australia | Teh L.,Cranio Maxillo Facial Unit | Pollett M.A.,University of Western Australia | Goodman D.,Murdoch University | And 8 more authors.
PLoS ONE | Year: 2013

We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function. © 2013 Godinho et al. Source

Discover hidden collaborations