Entity

Time filter

Source Type


Song H.,Northeast Petroleum University | Gong J.,Northeast Petroleum University | Jang N.,Northeast Petroleum University | Li F.,Northeast Petroleum University | And 4 more authors.
Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology | Year: 2016

A series of MCM-41-supported NixP catalysts was prepared by the solvothermal method using low-price triphenylphosphine as phosphorus material and tri-n-octylamine as coordinating liquid reaction system. They were characterized with X-ray diffraction, N2 sorption, CO sorption, X-ray photoelectron spectroscopy and transmission electron microscopy techniques. The effects of initial P/Ni molar ratio on their structures and hydrodesulfurization performances were investigated in a lab-scale continuous flow fixed-bed reactor by feeding 1% of dibenzothiophene (DBT) in decahydronaphthalene. It was shown that Ni12P5 was primarily formed with a small amount of Ni2P at the initial P/Ni molar ratio of 0.5. When the initial P/Ni molar ratio was higher than 0.5, pure Ni2P phase was generated, and its crystal size decreased, and thus, its dispersion increased with the increase of initial P/Ni molar ratio. At 613 K, 3.0 MPa, H2/oil ratio of 500 (volume ratio), and weight hourly space velocity of 2.0 h-1, the DBT conversion nearly reached 100% on both the Ni-P(6)/MCM-41 and the Ni-P(10)/MCM-41 samples. © 2016, Science Press. All right reserved. Source


Song H.,Northeast Petroleum University | Gao H.-J.,Northeast Petroleum University | Song H.-L.,Heilongjiang University | Cui X.-H.,Daqing Petrochemical Company | And 3 more authors.
Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology | Year: 2014

Cu(I)Y, Ce(IV)-Y and Cu(I)-Ce(IV)-Y adsorbents were successfully prepared by liquid-phase ion-exchange of Y zeolites with combined Cu and Ce ions. The adsorbents were characterized by means of X-ray diffraction (XRD) and N2-adsorption specific surface area measurements (BET). The effect of preparation conditions on the adsorptive desulfurization properties over Cu(I)-Ce(IV)-Y were studied by a static desulfurization method. The breakthrough sulfur capacities of the adsorbents were studied in a fixed-bed reactor system. Meanwhile, adsorptive desulfurization selectivities of the adsorbents were studied through model fuels, which made up of 1-octane solution of benzothiophene and thiophene, then respectively mixed with a certain amount of toluene, cyclohexene or pyridine. The results indicate that the optimum preparation conditions of Cu(I)-Ce(IV)-Y is ion-exchange time of 48 h, Cu/Ce molar ratio of 1, and calcination temperature of 550 ℃. Cu(I)-Ce(IV)-Y adsorbent exhibited the best desulfurization performance with model fuels, which contain a certain amount of toluene and cyclohexene. The effect of toluene, cyclohexene and pyridine at the same concentration, on the metal ion-exchanged Y zeolites for sulfur removal is in the order: pyridine > cyclohexene > toluene. The introduction of Cu+ can improve the desulfurization activity of adsorbent, while the introduction of Ce4+ can improve the selectivity of adsorbent. The synergistic effect of Cu+ and Ce4+ contribute to Cu(I)-Ce(IV)-Y not only has the high sulfur adsorption capacity but also has the ability of resistance to aromatics and olefins. ©, 2014, Science Press. All right reserved. Source


Song H.,Northeast Petroleum University | Wang Z.-D.,Northeast Petroleum University | Dai M.,Northeast Petroleum University | Dai M.,CPE Xinjiang Petroleum Prospecting and Design Research Institute Co. | And 4 more authors.
Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology | Year: 2014

The Ni2P/MCM-41 catalysts was prepared at low reduction temperature by temperature programmed reduction. The catalyst was characterized by H2-TPR, TG-DTG, XRD, BET, and XPS. The effects of reduction temperature on formation of the active Ni2P phase and HDS performance of the catalysts were studied. The results showed that a pure Ni2P phase can be obtained with samples reduced at low reduction temperature range of 210~390 °C. The catalyst obtained at reduction temperature of 390 °C exhibited the highest HDS activity. At a reaction temperature of 340 °C, pressure of 3.0 MPa, H2/oil volume ratio of 500, and weight hourly space velocity (WHSV) of 2.0 h-1, the DBT HDS conversion reached to 99.0%. Source


Song H.,Northeast Petroleum University | Jiang N.,Northeast Petroleum University | Song H.-L.,Heilongjiang University | Li F.,Northeast Petroleum University | And 5 more authors.
Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology | Year: 2015

This paper introduces a simple and mild route to prepare Ni2P catalysts. Ni2P/MCM-41 catalysts were successfully prepared using MCM-41 as the support. The catalysts were characterized by H2 temperature program reduction (H2-TPR), X-ray diffraction (XRD), N2-adsorption specific surface area measurements (BET), and X-ray photoelectron spectroscopy (XPS) analysis. The effects of initial Ni/P molar ratio on hydrodesulfurization (HDS) performance of catalysts and catalyst stability were studied with a lab-scale continuous flow type fixed-bed reactor systemusing a feed containing 1% dibenzothiophene (DBT) in decahydronaphthalene. The results indicated that a pure Ni2P phase was obtained when the initial Ni/P molar ratios were 1/2 and 1/3. The catalyst prepared with initial Ni/P mol ratios of 1/2 exhibited the highest activity. At a reaction temperature of 340℃, a pressure of 3.0 MPa, a H2/oil volume ratio of 500, and a weight hourly space velocity (WHSV) of 2.0 h-1, the HDS conversion was close to 100%. ©, 2015, Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology. All right reserved. Source


Song H.,Northeast Petroleum University | Song H.,Heilongjiang University | Zhang F.-Y.,Northeast Petroleum University | Song H.-L.,Heilongjiang University | And 5 more authors.
Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology | Year: 2015

The supported Ni2P/MCM-41 catalyst was prepared by a solvothermal method using triphenylphosphine (TPP) as a cheap phosphorus material and tri-n-octylamine (TOA) as the coordinating liquid reaction system. The catalysts were characterized by X-ray diffraction (XRD), N2-adsorption, CO uptake, X-ray photoelectronspectroscopy (XPS) and transmission electron microscopy (TEM). The solvothermal synthesis was performed at atmospheric pressure and 330 ℃, at least 300 ℃ lower than the temperature for preparing the corresponding catalysts by temperature-programmed reduction (H2-TPR) method. The structure and hydrodesulfurization (HDS) performance of the as-prepared Ni2P/MCM-41 catalyst are compared with those prepared by H2-TPR, with dibenzothiophene (DBT) as a model compound. The results showed that the solvothermal method can decrease the aggregation of P species on the catalyst surface so as to achieve a Ni2P catalyst with high surface area (690 m2/g) and then promote the formation of small and highly dispersed Ni2P active phase. The catalyst from solvothermal synthesis exhibits distinctly a superior HDS performance to that prepared by H2-TPR method. Under the conditions of 340 ℃, 3.0 MPa, a H2/oil volume ratio of 500 (volume ratio), and a weight hourly space velocity (WHSV) of 2.0 h-1, the conversion of DBT reaches 96.8% over the catalyst from solvothermal synthesis, which is 10.6% higher than that over the catalyst prepared via H2-TPR. ©, 2015, Science Press. All right reserved. Source

Discover hidden collaborations