Time filter

Source Type

Villeurbanne, France

Yamane A.,Nagoya University | Fukui M.,Nagoya University | Sugimura Y.,Nagoya University | Itoh M.,Nagoya University | And 5 more authors.
FEBS Journal

Transglutaminases (TGases) are a family of enzymes that catalyze cross-linking reactions between proteins. During epidermal differentiation, these enzymatic reactions are essential for formation of the cornified envelope, which consists of cross-linked structural proteins. Two main transglutaminases isoforms, epidermal-type (TGase 3) and keratinocyte-type (TGase 1), are cooperatively involved in this process of differentiating keratinocytes. Information regarding their substrate preference is of great importance to determine the functional role of these isozymes and clarify their possible co-operative action. Thus far, we have identified highly reactive peptide sequences specifically recognized by TGases isozymes such as TGase 1, TGase 2 (tissue-type isozyme) and the blood coagulation isozyme, Factor XIII. In this study, several substrate peptide sequences for human TGase 3 were screened from a phage-displayed peptide library. The preferred substrate sequences for TGase 3 were selected and evaluated as fusion proteins with mutated glutathione S-transferase. From these studies, a highly reactive and isozyme-specific sequence (E51) was identified. Furthermore, this sequence was found to be a prominent substrate in the peptide form and was suitable for detection of in situ TGase 3 activity in the mouse epidermis. TGase 3 enzymatic activity was detected in the layers of differentiating keratinocytes and hair follicles with patterns distinct from those of TGase 1. Our findings provide new information on the specific distribution of TGase 3 and constitute a useful tool to clarify its functional role in the epidermis. © 2010 FEBS. Source

Perez Alea M.,CovalAb | Thomas V.,CovalAb | Martin G.,CovalAb | El Alaoui S.,CovalAb
Amino Acids

Transglutaminases (TGs) expression and enzymatic activities in human saliva were investigated. Specific antibodies showed the co-existence of TG1, TG2, TG3 and TG4. TG2 and TG3 were found in native and multiple proteolytic forms. Our data indicate that TG1 and TG2 isoenzymes are highly active with the major activity attributed to TG1. These findings pave the way for future studies on the physiological role of TG in the oral cavity and the potential impact of their deregulation in TG-associated oral diseases. © 2011 Springer-Verlag. Source

Discover hidden collaborations