Cosun Food Technology Center

Roosendaal, Netherlands

Cosun Food Technology Center

Roosendaal, Netherlands

Time filter

Source Type

Vogt L.M.,University of Groningen | Meyer D.,Sensus Inc. | Pullens G.,Cosun Food Technology Center | Faas M.M.,University of Groningen | And 4 more authors.
Journal of Nutrition | Year: 2014

Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear.We hypothesized that β2→1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2 (TLR2), and we studied whether β2→1-fructan chain-length differences affect this process. T84 human intestinal epithelial cell monolayers were incubated with 4 β2→1-fructan formulations of different chain-length compositions and were stimulated with the proinflammatory phorbol 12-myristate 13-acetate (PMA). Transepithelial electrical resistance (TEER) was analyzed by electric cell substrate impedance sensing (ECIS) as a measure for tight junction-mediated barrier function. To confirm TLR2 involvement in barrier modulation by β2→1-fructans, ECIS experiments were repeated using TLR2 blocking antibody. After preincubation of T84 cells with short-chain β2→1-fructans, the decrease in TEER as induced by PMA (62.3 ± 5.2%, P < 0.001) was strongly attenuated (15.2 ± 8.8%, P < 0.01). However, when PMA was applied first, no effect on recovery was observed during addition of the fructans. By blocking TLR2 on the T84 cells, the protective effect of short-chain β2→1-fructans was substantially inhibited. Stimulation of human embryonic kidney human TLR2 reporter cells with β2→1-fructans induced activation of nuclear factor kappa-light-chain-enhancer of activated B cells, confirming that β2→1-fructans are specific ligands for TLR2. To conclude, β2→1-fructans exert time-dependent and chain length-dependent protective effects on the T84 intestinal epithelial cell barrier mediated via TLR2. These results suggest that TLR2 located on intestinal epithelial cells could be a target of β2→1-fructan-mediated health effects. © 2014 American Society for Nutrition.


Vogt L.,University of Groningen | Meyer D.,Sensus B.V | Pullens G.,Cosun Food Technology Center | Faas M.,University of Groningen | And 5 more authors.
Critical Reviews in Food Science and Nutrition | Year: 2015

Beneficial effects of inulin-type fructans are discussed in view of studies that applied the oligosaccharides in colon cancer, chronic inflammatory diseases, vaccination efficacy, and prevention of infection and allergy. In the present paper, we discuss their immunomodulating effects. It is suggested that immunomodulation is elicited through indirect and direct mechanisms. Indirect mechanisms encompass stimulation of growth and activity of lactic acid bacteria, but can also be caused by fermentation products of these bacteria, i.e., short chain fatty acids. Evidence for direct effects on the immune system generally remains to be confirmed. It is suggested that inulin-type fructans can be detected by gut dendritic cells (DCs), through receptor ligation of pathogen recognition receptors (PRRs) such as Toll-like receptors, nucleotide oligomerization domain containing proteins (NODs), C-type lectin receptors, and galectins, eventually inducing pro- and anti-inflammatory cytokines. DCs may also exert antigen presenting capacity toward effector cells, such as B cells, T cells, and natural killer cells locally, or in the spleen. Inulin-type fructans may also ligate PRRs expressed on gut epithelium, which could influence its barrier function. Inulin-type fructans are potent immunomodulating food components that hold many promises for prevention of disease. However, more studies into the mechanisms, dose-effect relations, and structure-function studies are required. © 2015, © Taylor and Francis Group, LLC.


Vogt L.,University of Groningen | Ramasamy U.,Wageningen University | Meyer D.,Sensus B.V. | Pullens G.,Cosun Food Technology Center | And 4 more authors.
PLoS ONE | Year: 2013

Introduction:β2→1-fructans are dietary fibers. Main objectives of this study were 1) to demonstrate direct signalling of β2→1-fructans on immune cells, 2) to study whether this is mediated by the pattern recognition receptors Toll-like receptors (TLRs) and nucleotide-binding oligomerisation domain-containing proteins (NODs), and 3) to relate the observed effects to the chain length differences in β2→1-fructans.Methods:Four different β2→1-fructan formulations were characterised for their chain length profile. Human peripheral blood mononuclear cells (PBMCs) were stimulated in vitro with β2→1-fructans, and production of IL-1Ra, IL-1β, IL-6, IL-10, IL-12p70, and TNF-α was analysed. Reporter cells for TLRs and NODs were incubated with β2→1-fructans and analysed for NF-κB/AP-1 activation.Results:Cytokine production in human PBMCs was dose- and chain length-dependent. Strikingly, short chain enriched β2→1-fructans induced a regulatory cytokine balance compared to long chain enriched β2→1-fructans as measured by IL-10/IL-12 ratios. Activation of reporter cells showed that signalling was highly dependent on TLRs and their adapter, myeloid differentiation primary response protein 88 (MyD88). In human embryonic kidney reporter cells, TLR2 was prominently activated, while TLR4, 5, 7, 8, and NOD2 were mildly activated.Conclusions:β2→1-fructans possess direct signalling capacity on human immune cells. By activating primarily TLR2, and to a lesser extent TLR4, 5, 7, 8, and NOD2, β2→1-fructan stimulation results in NF-κB/AP-1 activation. Chain length of β2→1-fructans is important for the induced activation pattern and IL-10/IL-12 ratios. © 2013 Vogt et al.


Kiskini A.,TU Eindhoven | Zondervan E.,University of Bremen | Wierenga P.A.,Wageningen University | Poiesz E.,Cosun Food Technology Center | Gruppen H.,Wageningen University
Computers and Chemical Engineering | Year: 2016

The design of a biorefining process is challenging due to the high number of products that can be obtained from one feedstock, and the fact that some products can be negatively affected by processing conditions that are essential for other products. To facilitate this design, we propose the use of the product driven process synthesis methodology, with some adaptations. Four novel steps were introduced: (1) decomposition of the feedstock into its main compound classes, (2) identification of the potential uses of the compound classes found in the feedstock, based on the functionalities that they can deliver, (3) selection of the product-targets by evaluating their economic potential, and (4) identification of "critical tasks", i.e., tasks that negatively affect the quantity and/or quality of each product during their separation. To illustrate how this new approach can be used in practice, a case study of a sugar beet leaves biorefinery is presented. © 2016 Elsevier Ltd.


Silva V.,Institute for Sustainable Process Technology | Poiesz E.,Cosun Food Technology Center | Van Der Heijden P.,Paques BV
Journal of Applied Electrochemistry | Year: 2013

Industrial processes usually generate streams enriched with high organic and inorganic components. Due to the complexity of these streams sometimes it is not quite straightforward to predict the performance of desalination technologies. Some technologies are available for the selective removal of salts from aqueous stream, but in general these technologies are applied in high value applications where salts are either the product or limit further purification of the final product is required. These technologies are, however, not widely used in low value applications like wastewater treatment. The aim of this article is to review, improve and perform the design of electrodialysis processes for relevant industrial wastewater applications. It is focused on the determination of the critical design parameters like membrane resistance, current efficiency and limiting current density through lab scale experiments and its further use for industrial scale first approximation design. In this article, the basic equations for design are reviewed and a practical approach to obtain the number of stacks required for a certain separation is introduced. An industrial wastewater stream has been used for lab batch experiment and its following continuous plant design. The results show that it is possible to separate monovalent ions in a high rate (more than 70 %) and divalent ions were less separated (less than 50 %). The energy required for the particular case was evaluated in a range from 6 to 11 kWh/m3 of feed stream depending on the water reclamation rate. © 2013 Springer Science+Business Media Dordrecht.


Leijdekkers A.G.M.,Wageningen University | Leijdekkers A.G.M.,Cosun Food Technology Center | Bink J.P.M.,Cosun Food Technology Center | Geutjes S.,Cosun Food Technology Center | And 2 more authors.
Bioresource Technology | Year: 2013

Enzymatic saccharification of sugar beet pulp was optimized on kg-scale to release the maximum amounts of monomeric galacturonic acid and arabinose with limited concomitant degradation of cellulose, using conditions that are feasible for industrial upscaling. A selected mixture of pectinases released 79% of the galacturonic acid and 82% of the arabinose as monomers from sugar beet pulp while simultaneously degrading only 17% of the cellulose. The recalcitrant structures that were obtained after hydrolysis were characterized using mass spectrometry. The most abundant structures had an average degree of polymerization of 4-5. They were identified as partially acetylated rhamnogalacturonan-oligosaccharides, mostly containing a terminal galacturonosyl residue on both reducing and non-reducing end, partially methyl esterified/acetylated homogalacturonan-oligosaccharides, mostly containing methyl and acetyl esters at contiguous galacturonosyl residues and arabinan-oligosaccharides, hypothesized to be mainly branched. It could be concluded that especially rhamnogalacturonan-galacturonohydrolase, arabinofuranosidase and pectin acetylesterase are lacking for further degradation of recalcitrant oligosaccharides. © 2012 Elsevier Ltd.


Chilamkurthi S.,Technical University of Delft | Willemsen J.-H.,Technical University of Delft | van der Wielen L.A.M.,Technical University of Delft | Poiesz E.,Cosun Food Technology Center | Ottens M.,Technical University of Delft
Journal of Chromatography A | Year: 2012

Adsorption equilibria of the saccharides d-glucose, d-galactose, l-arabinose, lactose and a sugar acid were measured on gel-type sulfonated poly (styrene-co-divinylbenzene) strong cation exchange resins in a high-throughput (HT) 96-well plate batch uptake mode using a pipetting robot at 25°C. Four different ionic forms, Ca 2+, K +, Na +, and H + were used. Single component adsorption isotherms were determined in a concentration range of 10-240mgml -1. Multicomponent experiments were performed to investigate competitive adsorption in a concentration range of 10-120mgml -1. A qualitative investigation on competitive and cooperative effects was performed. All sugar isotherms showed a linear behavior except for the sugar acid which showed an unfavorable (anti-Langmuir) behavior in the high concentration ranges. Selectivity values were determined from the binary mixture partition coefficient (K) values of each component. This HT 96-well plate batch uptake method proves to be less laborious and consumes less time and material compared to the frontal analysis and adsorption-desorption methods where column experimentation is used. Ternary mixture separation of arabinose and the sugar acid from glucose showed K + and Ca 2+ loaded resins having the best selectivity (DIAION Ca 2+ 2.01 and 1.78 for l-arabinose/d-glucose and sugar acid/l-arabinose respectively), similarly Purolite K + loaded resin for the lactose separation from glucose and galactose (1.17 for lactose/d-glucose). Column experiments were performed to validate the batch uptake experiments. The static binding results could easily be translated to the column experiments with good agreement. Finally, adding to the validity of the approach, binary and ternary fixed-bed experiments were well described by a dynamic mathematical chromatographic model using the parameters obtained from the binary-component isotherm data. © 2012 Elsevier B.V..


Leijdekkers A.G.M.,Wageningen University | Leijdekkers A.G.M.,Cosun Food Technology Center | Aguirre M.,TNO | Aguirre M.,Maastricht University | And 4 more authors.
Journal of Agricultural and Food Chemistry | Year: 2014

The in vitro fermentation characteristics of different classes of sugar beet pectic oligosaccharides (SBPOS) were studied using human and pig fecal inocula. The SBPOS consisted mainly of partially acetylated rhamnogalacturonan oligosaccharides and partially methyl-esterified/acetylated homogalacturonan oligosaccharides. Some SBPOS contained an unsaturated galacturonic acid residue at their non-reducing end. It was shown that SBPOS could be completely fermented by human and pig fecal microbiota, thereby producing butyrate yet mainly acetate and propionate as metabolites. The degradation of SBPOS by pig fecal microbiota was different and much slower compared to human fecal microbiota. In general, rhamnogalacturonan oligosaccharides were degraded slower than homogalacturonan oligosaccharides. Acetylation of rhamnogalacturonan oligosaccharides lowered the degradation rate by pig fecal microbiota but not by human fecal microbiota. No classic bifidogenic effect was shown for SBPOS using human fecal inoculum. However, several other potentially interesting modifications in the microbiota composition that can be associated with host health were observed, which are discussed. © 2014 American Chemical Society.


Struijs J.L.M.,Cosun Food Technology Center
Zuckerindustrie | Year: 2012

Beet growing - evolution of campaign - turbine damage - pulp drying - evaporation - biogas - thick juice storage - investments - beet price - carbonatation lime - beet crown - invert sugar content - biopolymers - Nieuw Prinsenland.


Leijdekkers A.G.M.,Wageningen University | Leijdekkers A.G.M.,Cosun Food Technology Center | Sanders M.G.,Wageningen University | Schols H.A.,Wageningen University | Gruppen H.,Wageningen University
Journal of Chromatography A | Year: 2011

Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS n) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS n-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS n a versatile and powerful additional technique in plant cell wall analysis. © 2011 Elsevier B.V.

Loading Cosun Food Technology Center collaborators
Loading Cosun Food Technology Center collaborators