Acquario di Genoa Costa Edutainment SpA

Genova, Italy

Acquario di Genoa Costa Edutainment SpA

Genova, Italy

Time filter

Source Type

Gristina M.,CNR Institute for Coastal Marine Environment | Cardone F.,University of Bari | Carlucci R.,University of Bari | Castellano L.,Acquario di Genoa Costa Edutainment SpA | And 2 more authors.
Marine Ecology | Year: 2015

Population abundance, distribution and habitat preference of the Mediterranean sympatric seahorses Hippocampus guttulatus and Hippocampus hippocampus were investigated in a semi-enclosed sea system (Apulian coast, Ionian Sea). A total of 242 individuals of seahorses were sighted in the 11 transects surveyed in summer 2011. Hippocampus guttulatus (n = 225) were 14 times more abundant than H. hippocampus (17). The mean abundance of H. guttulatus for all the pooled sites was 0.018 m-2 (SE ± 0.003) ranging from a maximum of 0.035 (SE ± 0.007) to a minimum of 0.008 (SE ± 0.002). The size structure of long-snouted seahorse shows a population ranging from 7 to 14 cm (SL) with a peak at 10 cm (TL). Juveniles (96.0 ± 8.0 mm) represent a significant fraction of the population, accounting more than 21% of the sighted individuals. In Mar Piccolo, H. guttulatus is able to shelter both in monotonous habitats, including the algal beds, and diversified ones, such as the rich filter-feeder communities that colonize hard substrates. By contrast, H. hippocampus is mainly associated with habitats of low complexity. Today, the Mar Piccolo di Taranto is among the most heavily polluted water bodies in South Italy, with trace metals, hydrocarbons, pesticides and organic wastes affecting both biotic and abiotic matrices. However, despite the high level of degradation, the presence of a large mussel farm has avoided the impact of towed fishing gears, and eutrophication of water bodies has ensured a high trophic level that supports large crustacean populations, potential prey for seahorses. © 2014 Blackwell Verlag GmbH.


Faimali M.,CNR Institute of Neuroscience | Garaventa F.,CNR Institute of Neuroscience | Piazza V.,CNR Institute of Neuroscience | Costa E.,CNR Institute of Neuroscience | And 8 more authors.
Marine Environmental Research | Year: 2014

The aim of this study was a preliminary investigation on the possibility of using the ephyra of Scyphozoan jellyfish Aurelia aurita (Linnaeus, 1758), the common moon jellyfish, as an innovative model organism in marine ecotoxicology. A series of sequential experiments have been carried out in laboratory in order to investigate the influence of different culturing and methodological parameters (temperature, photoperiod, ephyrae density and age) on behavioural end-points (% of Frequency of Pulsations) and standardize a testing protocol. After that, the organisms have been exposed to two well known reference toxic compounds (Cadmium Nitrate and SDS) in order to analyse the acute and behavioural responses during static exposure. Results of this work indicatethat the proposed behavioural end-point, frequency of pulsations (Fp), is an easily measurable one and can be used coupled with an acute one (immobilization) and that ephyrae of jellyfish are very promising model organisms for ecotoxicological investigation. © 2013 Elsevier Ltd.


PubMed | Acquario di Genoa Costa Edutainment S.p.A and CNR Institute of Neuroscience
Type: | Journal: Marine environmental research | Year: 2014

The aim of this study was a preliminary investigation on the possibility of using the ephyra of Scyphozoan jellyfish Aurelia aurita (Linnaeus, 1758), the common moon jellyfish, as an innovative model organism in marine ecotoxicology. A series of sequential experiments have been carried out in laboratory in order to investigate the influence of different culturing and methodological parameters (temperature, photoperiod, ephyrae density and age) on behavioural end-points (% of Frequency of Pulsations) and standardize a testing protocol. After that, the organisms have been exposed to two well known reference toxic compounds (Cadmium Nitrate and SDS) in order to analyse the acute and behavioural responses during static exposure. Results of this work indicatethat the proposed behavioural end-point, frequency of pulsations (Fp), is an easily measurable one and can be used coupled with an acute one (immobilization) and that ephyrae of jellyfish are very promising model organisms for ecotoxicological investigation.

Loading Acquario di Genoa Costa Edutainment SpA collaborators
Loading Acquario di Genoa Costa Edutainment SpA collaborators