CorVasc Vascular Laboratory

Indianapolis, IN, United States

CorVasc Vascular Laboratory

Indianapolis, IN, United States
SEARCH FILTERS
Time filter
Source Type

PubMed | CorVasc Vascular Laboratory, Cornell College, University of Cagliari, Global Biomedical Technologies Inc. and 6 more.
Type: Comparative Study | Journal: Journal of clinical ultrasound : JCU | Year: 2016

To compare the strength of correlation between automatically measured carotid lumen diameter (LD) and interadventitial diameter (IAD) with plaque score (PS).Retrospective study on a database of 404 common carotid artery B-mode sonographic images from 202 diabetic patients. LD and IAD were computed automatically using an advanced computerized edge detection method and compared with two distinct manual measurements. PS was computed by adding the maximal thickness in millimeters of plaques in segments taken from the internal carotid artery, bulb, and common carotid artery on both sides.The coefficient of correlation was 0.19 (p < 0.007) between LD and PS, and 0.25 (p < 0.0006) between IAD and PS. After excluding 10 outliers, coefficient of correlation was 0.25 (p < 0.0001) between LD and PS, and 0.38 (p < 0.0001) between IAD and PS. The precision of merit of automated versus the two manual measurements was 96.6% and 97.2% for LD, and 97.7% and 98.1%, for IAD, respectively.Our automated measurement system gave satisfying results in comparison with manual measurements. Carotid IAD was more strongly correlated to PS than carotid LD in this population sample of Japanese diabetic patients.


PubMed | CorVasc Vascular Laboratory, Mira Loma, University of Cagliari, Global Biomedical Technologies Inc. and 7 more.
Type: Journal Article | Journal: Journal of medical systems | Year: 2016

The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.350.95mm for JDB and 6.201.35mm for HKDB. The precision-of-merit was: 97.4% and 98.0% w.r.t to two manual tracings for JDB and 99.7% and 97.9% w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.


PubMed | CorVasc Vascular Laboratory, University of Barcelona, National Institute of Technology Raipur, AtheroPointTM and 5 more.
Type: Journal Article | Journal: Journal of medical systems | Year: 2015

Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis SR Pro, Boston Scientific, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 17.38 mm(3), 27.79 10.94 mm(3), 46.44 19.13 mm(3) and 35.92 16.44 mm(3) respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 0.02 and 0.95 + 0.02 respectively. Students t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80%. Out procedure and protocol is along the line with method previously published clinically.


PubMed | CorVasc Vascular Laboratory, University of Cagliari, Global Biomedical Technologies Inc., National Center for Global Health and Medicine and 6 more.
Type: | Journal: Medical & biological engineering & computing | Year: 2016

Monitoring of cerebrovascular diseases via carotid ultrasound has started to become a routine. The measurement of image-based lumen diameter (LD) or inter-adventitial diameter (IAD) is a promising approach for quantification of the degree of stenosis. The manual measurements of LD/IAD are not reliable, subjective and slow. The curvature associated with the vessels along with non-uniformity in the plaque growth poses further challenges. This study uses a novel and generalized approach for automated LD and IAD measurement based on a combination of spatial transformation and scale-space. In this iterative procedure, the scale-space is first used to get the lumen axis which is then used with spatial image transformation paradigm to get a transformed image. The scale-space is then reapplied to retrieve the lumen region and boundary in the transformed framework. Then, inverse transformation is applied to display the results in original image framework. Two hundred and two patients left and right common carotid artery (404 carotid images) B-mode ultrasound images were retrospectively analyzed. The validation of our algorithm has done against the two manual expert tracings. The coefficient of correlation between the two manual tracings for LD was 0.98 (p<0.0001) and 0.99 (p<0.0001), respectively. The precision of merit between the manual expert tracings and the automated system was 97.7 and 98.7%, respectively. The experimental analysis demonstrated superior performance of the proposed method over conventional approaches. Several statistical tests demonstrated the stability and reliability of the automated system.


PubMed | CorVasc Vascular Laboratory, National Institute of Technology Raipur, University of Cagliari, National Center for Global Health and Medicine and 4 more.
Type: | Journal: Computer methods and programs in biomedicine | Year: 2016

Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup.This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS).Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K=10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS.This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary risk assessment and stratification while demonstrating a successful design of the machine learning system based on our assumptions.


PubMed | zienda Ospedaliero Universitaria di Cagliari, CorVasc Vascular Laboratory, Global Biomedical Technologies Inc., Kalyani Government Engineering College and 2 more.
Type: Journal Article | Journal: Journal of medical systems | Year: 2016

Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.


PubMed | University of Cagliari, Mira Loma, Imperial College London, National Institute of Technology Kurukshetra and 5 more.
Type: Review | Journal: Current atherosclerosis reports | Year: 2016

Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.


PubMed | CorVasc Vascular Laboratory, AtheroPointTM, National Institute of Technology Raipur, University of Cagliari and 6 more.
Type: | Journal: Computers in biology and medicine | Year: 2016

This study presents AtheroCloud - a novel cloud-based smart carotid intima-media thickness (cIMT) measurement tool using B-mode ultrasound for stroke/cardiovascular risk assessment and its stratification. This is an anytime-anywhere clinical tool for routine screening and multi-center clinical trials. In this pilot study, the physician can upload ultrasound scans in one of the following formats (DICOM, JPEG, BMP, PNG, GIF or TIFF) directly into the proprietary cloud of AtheroPoint from the local server of the physicians office. They can then run the intelligent and automated AtheroCloud cIMT measurements in point-of-care settings in less than five seconds per image, while saving the vascular reports in the cloud. We statistically benchmark AtheroCloud cIMT readings against sonographer (a registered vascular technologist) readings and manual measurements derived from the tracings of the radiologist. One hundred patients (75 M/25 F, mean age: 6811 years), IRB approved, Toho University, Japan, consisted of Left/Right common carotid artery (CCA) artery (200 ultrasound scans), (Toshiba, Tokyo, Japan) were collected using a 7.5MHz transducer. The measured cIMTs for L/R carotid were as follows (in mm): (i) AtheroCloud (0.870.20, 0.770.20); (ii) sonographer (0.970.26, 0.890.29) and (iii) manual (0.900.20, 0.790.20), respectively. The coefficient of correlation (CC) between sonographer and manual for L/R cIMT was 0.74 (P<0.0001) and 0.65 (P<0.0001), while, between AtheroCloud and manual was 0.96 (P<0.0001) and 0.97 (P<0.0001), respectively. We observed that 91.15% of the population in AtheroCloud had a mean cIMT error less than 0.11mm compared to sonographers 68.31%. The area under curve for receiving operating characteristics was 0.99 for AtheroCloud against 0.81 for sonographer. Our Framingham Risk Score stratified the population into three bins as follows: 39% in low-risk, 70.66% in medium-risk and 10.66% in high-risk bins. Statistical tests were performed to demonstrate consistency, reliability and accuracy of the results. The proposed AtheroCloud system is completely reliable, automated, fast (3-5 seconds depending upon the image size having an internet speed of 180Mbps), accurate, and an intelligent, web-based clinical tool for multi-center clinical trials and routine telemedicine clinical care.


PubMed | CorVasc Vascular Laboratory, National Institute of Technology Raipur, University of Cagliari, National Center for Global Health and Medicine and 4 more.
Type: | Journal: Computer methods and programs in biomedicine | Year: 2016

Interventional cardiologists have a deep interest in risk stratification prior to stenting and percutaneous coronary intervention (PCI) procedures. Intravascular ultrasound (IVUS) is most commonly adapted for screening, but current tools lack the ability for risk stratification based on grayscale plaque morphology. Our hypothesis is based on the genetic makeup of the atherosclerosis disease, that there is evidence of a link between coronary atherosclerosis disease and carotid plaque built up. This novel idea is explored in this study for coronary risk assessment and its classification of patients between high risk and low risk. This paper presents a strategy for coronary risk assessment by combining the IVUS grayscale plaque morphology and carotid B-mode ultrasound carotid intima-media thickness (cIMT) - a marker of subclinical atherosclerosis. Support vector machine (SVM) learning paradigm is adapted for risk stratification, where both the learning and testing phases use tissue characteristics derived from six feature combinational spaces, which are then used by the SVM classifier with five different kernels sets. These six feature combinational spaces are designed using 56 novel feature sets. K-fold cross validation protocol with 10 trials per fold is used for optimization of best SVM-kernel and best feature combination set. IRB approved coronary IVUS and carotid B-mode ultrasound were jointly collected on 15 patients (2 days apart) via: (a) 40MHz catheter utilizing iMap (Boston Scientific, Marlborough, MA, USA) with 2865 frames per patient (42,975 frames) and (b) linear probe B-mode carotid ultrasound (Toshiba scanner, Japan). Using the above protocol, the system shows the classification accuracy of 94.95% and AUC of 0.95 using optimized feature combination. This is the first system of its kind for risk stratification as a screening tool to prevent excessive cost burden and better patients cardiovascular disease management, while validating our two hypotheses.


PubMed | CorVasc Vascular Laboratory, University of Barcelona, National Institute of Technology Raipur, University of Louisville and 6 more.
Type: | Journal: Computer methods and programs in biomedicine | Year: 2016

Fast intravascular ultrasound (IVUS) video processing is required for calcium volume computation during the planning phase of percutaneous coronary interventional (PCI) procedures. Nonlinear multiresolution techniques are generally applied to improve the processing time by down-sampling the video frames.This paper presents four different segmentation methods for calcium volume measurement, namely Threshold-based, Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) embedded with five different kinds of multiresolution techniques (bilinear, bicubic, wavelet, Lanczos, and Gaussian pyramid). This leads to 20 different kinds of combinations. IVUS image data sets consisting of 38,760 IVUS frames taken from 19 patients were collected using 40MHz IVUS catheter (Atlantis SR Pro, Boston Scientific, pullback speed of 0.5mm/sec.). The performance of these 20 systems is compared with and without multiresolution using the following metrics: (a) computational time; (b) calcium volume; (c) image quality degradation ratio; and (d) quality assessment ratio.Among the four segmentation methods embedded with five kinds of multiresolution techniques, FCM segmentation combined with wavelet-based multiresolution gave the best performance. FCM and wavelet experienced the highest percentage mean improvement in computational time of 77.15% and 74.07%, respectively. Wavelet interpolation experiences the highest mean precision-of-merit (PoM) of 94.063.64% and 81.3416.29% as compared to other multiresolution techniques for volume level and frame level respectively. Wavelet multiresolution technique also experiences the highest Jaccard Index and Dice Similarity of 0.7 and 0.8, respectively. Multiresolution is a nonlinear operation which introduces bias and thus degrades the image. The proposed system also provides a bias correction approach to enrich the system, giving a better mean calcium volume similarity for all the multiresolution-based segmentation methods. After including the bias correction, bicubic interpolation gives the largest increase in mean calcium volume similarity of 4.13% compared to the rest of the multiresolution techniques. The system is automated and can be adapted in clinical settings.We demonstrated the time improvement in calcium volume computation without compromising the quality of IVUS image. Among the 20 different combinations of multiresolution with calcium volume segmentation methods, the FCM embedded with wavelet-based multiresolution gave the best performance.

Loading CorVasc Vascular Laboratory collaborators
Loading CorVasc Vascular Laboratory collaborators