Time filter

Source Type

Indianapolis, IN, United States

Saba L.,University of Cagliari | Banchhor S.K.,National Institute of Technology Raipur | Suri H.S.,AtheroPoint | Londhe N.D.,National Institute of Technology Raipur | And 10 more authors.
Computers in Biology and Medicine | Year: 2016

This study presents AtheroCloud™ - a novel cloud-based smart carotid intima-media thickness (cIMT) measurement tool using B-mode ultrasound for stroke/cardiovascular risk assessment and its stratification. This is an anytime-anywhere clinical tool for routine screening and multi-center clinical trials. In this pilot study, the physician can upload ultrasound scans in one of the following formats (DICOM, JPEG, BMP, PNG, GIF or TIFF) directly into the proprietary cloud of AtheroPoint from the local server of the physician's office. They can then run the intelligent and automated AtheroCloud™ cIMT measurements in point-of-care settings in less than five seconds per image, while saving the vascular reports in the cloud. We statistically benchmark AtheroCloud™ cIMT readings against sonographer (a registered vascular technologist) readings and manual measurements derived from the tracings of the radiologist.One hundred patients (75 M/25 F, mean age: 68±11 years), IRB approved, Toho University, Japan, consisted of Left/Right common carotid artery (CCA) artery (200 ultrasound scans), (Toshiba, Tokyo, Japan) were collected using a 7.5 MHz transducer. The measured cIMTs for L/R carotid were as follows (in mm): (i) AtheroCloud™ (0.87±0.20, 0.77±0.20); (ii) sonographer (0.97±0.26, 0.89±0.29) and (iii) manual (0.90±0.20, 0.79±0.20), respectively. The coefficient of correlation (CC) between sonographer and manual for L/R cIMT was 0.74 (P<0.0001) and 0.65 (P<0.0001), while, between AtheroCloud™ and manual was 0.96 (P<0.0001) and 0.97 (P<0.0001), respectively. We observed that 91.15% of the population in AtheroCloud™ had a mean cIMT error less than 0.11 mm compared to sonographer's 68.31%. The area under curve for receiving operating characteristics was 0.99 for AtheroCloud™ against 0.81 for sonographer. Our Framingham Risk Score stratified the population into three bins as follows: 39% in low-risk, 70.66% in medium-risk and 10.66% in high-risk bins. Statistical tests were performed to demonstrate consistency, reliability and accuracy of the results. The proposed AtheroCloud™ system is completely reliable, automated, fast (3-5 seconds depending upon the image size having an internet speed of 180 Mbps), accurate, and an intelligent, web-based clinical tool for multi-center clinical trials and routine telemedicine clinical care. © 2016 Elsevier Ltd.

Banchhor S.K.,NIT RaipurChhattisgarh | Araki T.,Toho University | Londhe N.D.,NIT RaipurChhattisgarh | Ikeda N.,National Center for Global Health and Medicine | And 10 more authors.
Computer Methods and Programs in Biomedicine | Year: 2016

Background and objective Fast intravascular ultrasound (IVUS) video processing is required for calcium volume computation during the planning phase of percutaneous coronary interventional (PCI) procedures. Nonlinear multiresolution techniques are generally applied to improve the processing time by down-sampling the video frames. Methods This paper presents four different segmentation methods for calcium volume measurement, namely Threshold-based, Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) embedded with five different kinds of multiresolution techniques (bilinear, bicubic, wavelet, Lanczos, and Gaussian pyramid). This leads to 20 different kinds of combinations. IVUS image data sets consisting of 38,760 IVUS frames taken from 19 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/sec.). The performance of these 20 systems is compared with and without multiresolution using the following metrics: (a) computational time; (b) calcium volume; (c) image quality degradation ratio; and (d) quality assessment ratio. Results Among the four segmentation methods embedded with five kinds of multiresolution techniques, FCM segmentation combined with wavelet-based multiresolution gave the best performance. FCM and wavelet experienced the highest percentage mean improvement in computational time of 77.15% and 74.07%, respectively. Wavelet interpolation experiences the highest mean precision-of-merit (PoM) of 94.06 ± 3.64% and 81.34 ± 16.29% as compared to other multiresolution techniques for volume level and frame level respectively. Wavelet multiresolution technique also experiences the highest Jaccard Index and Dice Similarity of 0.7 and 0.8, respectively. Multiresolution is a nonlinear operation which introduces bias and thus degrades the image. The proposed system also provides a bias correction approach to enrich the system, giving a better mean calcium volume similarity for all the multiresolution-based segmentation methods. After including the bias correction, bicubic interpolation gives the largest increase in mean calcium volume similarity of 4.13% compared to the rest of the multiresolution techniques. The system is automated and can be adapted in clinical settings. Conclusions We demonstrated the time improvement in calcium volume computation without compromising the quality of IVUS image. Among the 20 different combinations of multiresolution with calcium volume segmentation methods, the FCM embedded with wavelet-based multiresolution gave the best performance. © 2016 Elsevier Ireland Ltd

Araki T.,Toho University | Banchhor S.K.,National Institute of Technology Raipur | Londhe N.D.,National Institute of Technology Raipur | Ikeda N.,National Center for Global Health and Medicine | And 11 more authors.
Journal of Medical Systems | Year: 2016

Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically. © 2015, Springer Science+Business Media New York.

Araki T.,Toho University | Ikeda N.,National Center for Global Health and Medicine | Shukla D.,National Institute of Technology Raipur | Jain P.K.,National Institute of Technology Raipur | And 11 more authors.
Computer Methods and Programs in Biomedicine | Year: 2016

Background and objective: Percutaneous coronary interventional procedures need advance planning prior to stenting or an endarterectomy. Cardiologists use intravascular ultrasound (IVUS) for screening, risk assessment and stratification of coronary artery disease (CAD). We hypothesize that plaque components are vulnerable to rupture due to plaque progression. Currently, there are no standard grayscale IVUS tools for risk assessment of plaque rupture. This paper presents a novel strategy for risk stratification based on plaque morphology embedded with principal component analysis (PCA) for plaque feature dimensionality reduction and dominant feature selection technique. The risk assessment utilizes 56 grayscale coronary features in a machine learning framework while linking information from carotid and coronary plaque burdens due to their common genetic makeup. Method: This system consists of a machine learning paradigm which uses a support vector machine (SVM) combined with PCA for optimal and dominant coronary artery morphological feature extraction. Carotid artery proven intima-media thickness (cIMT) biomarker is adapted as a gold standard during the training phase of the machine learning system. For the performance evaluation, K-fold cross validation protocol is adapted with 20 trials per fold. For choosing the dominant features out of the 56 grayscale features, a polling strategy of PCA is adapted where the original value of the features is unaltered. Different protocols are designed for establishing the stability and reliability criteria of the coronary risk assessment system (cRAS). Results: Using the PCA-based machine learning paradigm and cross-validation protocol, a classification accuracy of 98.43% (AUC 0.98) with K = 10 folds using an SVM radial basis function (RBF) kernel was achieved. A reliability index of 97.32% and machine learning stability criteria of 5% were met for the cRAS. Conclusions: This is the first Computer aided design (CADx) system of its kind that is able to demonstrate the ability of coronary risk assessment and stratification while demonstrating a successful design of the machine learning system based on our assumptions. © 2016 Elsevier Ireland Ltd.

Ikeda N.,National Center for Global Health and Medicine | Araki T.,Toho University | Dey N.,Global Biomedical Technologies Inc. | Bose S.,Global Biomedical Technologies Inc. | And 9 more authors.
International Angiology | Year: 2014

Aim: Carotid intima-media thickness (cIMT) measurements during clinical trials need to have a fixed reference point (also called as bulb edge points) in the anatomy from which the cIMT can be measured. Identification of the bulb edge points in carotid ultrasound images faces the challenge to be detected automatically due to low image quality and variations in ultrasound images, motion artefacts, image acquisition protocols, position of the patient, and orientation of the linear probe with respect to bulb and ultrasound gain controls during acquisition. Methods: This paper presents a patented comprehensive methodology for carotid bulb localization and bulb edge detection as a reference point. The method consists of estimating the lumen-intima borders accurately using classification paradigm. Transition points are located automatically based on curvature characteristics. Further we verify and validate the locations of bulb edge points using combination of several local image processing methods such as (i) lumen-intima shapes, (ii) bulb slopes, (iii) bulb curvature, (iv) mean lumen thickness and its variations, and (v) geometric shape fitting. Results: Our database consists of 155 ultrasound bulb images taken from various ultrasound machines with varying resolutions and imaging conditions. Further we run our automated system blindly to spot out the bulbs in a mixture database of 336 images consisting of bulbs and no-bulbs. We are able to detect the bulbs in the bulb database with 100% accuracy having 92% as close as to a neurologists's bulb location. Our mean lumen-intima error is 0.0133 mm with precision against the manual tracings to be 98.92%. Our bulb detection system is fast and takes on an average 9 seconds per image for detection for the bulb edge points and 4 seconds for verification/validation of the bulb edge points.

Discover hidden collaborations