Corn Insects and Crop Genetics Research Unit

Ames, IA, United States

Corn Insects and Crop Genetics Research Unit

Ames, IA, United States
Time filter
Source Type

Haas B.J.,The Broad Institute of MIT and Harvard | Papanicolaou A.,CSIRO | Yassour M.,The Broad Institute of MIT and Harvard | Yassour M.,Hebrew University of Jerusalem | And 22 more authors.
Nature Protocols | Year: 2013

De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.

Bolon Y.-T.,Plant Science Research Unit | Haun W.J.,University of Minnesota | Xu W.W.,University of Minnesota | Grant D.,Corn Insects and Crop Genetics Research Unit | And 11 more authors.
Plant Physiology | Year: 2011

Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max) genome. Approximately 120,000 soybean seeds were exposed to FN radiation doses of up to 32 Gray units to develop over 23,000 independent M2 lines. Here, we demonstrate the utility of this population for phenotypic screening and associated genomic characterization of striking and agronomically important traits. Plant variation was cataloged for seed composition, maturity, morphology, pigmentation, and nodulation traits. Mutants that showed significant increases or decreases in seed protein and oil content across multiple generations and environments were identified. The application of comparative genomic hybridization (CGH) to lesion-induced mutants for deletion mapping was validated on a midoleate x-ray mutant, M23, with a known FAD2-1A (for fatty acid desaturase) gene deletion. Using CGH, a subset of mutants was characterized, revealing deletion regions and candidate genes associated with phenotypes of interest. Exome resequencing and sequencing of PCR products confirmed FN-induced deletions detected by CGH. Beyond characterization of soybean FN mutants, this study demonstrates the utility of CGH, exome sequence capture, and next-generation sequencing approaches for analyses of mutant plant genomes. We present this FN mutant soybean population as a valuable public resource for future genetic screens and functional genomics research. © 2011 American Society of Plant Biologists.

Peiffer G.A.,Iowa State University | King K.E.,Iowa State University | Severin A.J.,Iowa State University | May G.D.,National Center for Genome Research | And 4 more authors.
Plant Physiology | Year: 2012

Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes. © 2012 American Society of Plant Biologists. All Rights Reserved.

Yang Y.,Louisiana State University | Zhu Y.C.,Southern Insect Management Research Unit | Ottea J.,Louisiana State University | Husseneder C.,Louisiana State University | And 5 more authors.
PLoS ONE | Year: 2011

The sugarcane borer, Diatraea saccharalis, is a major target pest of transgenic corn expressing Bacillus thuringiensis (Bt) proteins (i.e., Cry1Ab) in South America and the mid-southern region of the United States. Evolution of insecticide resistance in such target pests is a major threat to the durability of transgenic Bt crops. Understanding the pests' resistance mechanisms will facilitate development of effective strategies for delaying or countering resistance. Alterations in expression of cadherin- and alkaline phosphatase (ALP) have been associated with Bt resistance in several species of pest insects. In this study, neither the activity nor gene regulation of ALP was associated with Cry1Ab resistance in D. saccharalis. Total ALP enzymatic activity was similar between Cry1Ab-susceptible (Cry1Ab-SS) and -resistant (Cry1Ab-RR) strains of D. saccharalis. In addition, expression levels of three ALP genes were also similar between Cry1Ab-SS and -RR, and cDNA sequences did not differ between susceptible and resistant larvae. In contrast, altered expression of a midgut cadherin (DsCAD1) was associated with the Cry1Ab resistance. Whereas cDNA sequences of DsCAD1 were identical between the two strains, the transcript abundance of DsCAD1 was significantly lower in Cry1Ab-RR. To verify the involvement of DsCAD1 in susceptibility to Cry1Ab, RNA interference (RNAi) was employed to knock-down DsCAD1 expression in the susceptible larvae. Down-regulation of DsCAD1 expression by RNAi was functionally correlated with a decrease in Cry1Ab susceptibility. These results suggest that down-regulation of DsCAD1 is associated with resistance to Cry1Ab in D. saccharalis.

Cannon S.B.,Corn Insects and Crop Genetics Research Unit | Shoemaker R.C.,Corn Insects and Crop Genetics Research Unit
Breeding Science | Year: 2011

The soybean genome assembly has been available since the end of 2008. Significant features of the genome include large, gene-poor, repeat-dense pericentromeric regions, spanning roughly 57% of the genome sequence; a relatively large genome size of ~1.15 billion bases; remnants of a genome duplication that occurred ~13 million years ago (Mya); and fainter remnants of older polyploidies that occurred ~58Mya and >130Mya. The genome sequence has been used to identify the genetic basis for numerous traits, including disease resistance, nutritional characteristics, and developmental features. The genome sequence has provided a scaffold for placement of many genomic feature elements, both from within soybean and from related species. These may be accessed at several websites, including,,, and The taxonomic position of soybean in the Phaseoleae tribe of the legumes means that there are approximately two dozen other beans and relatives that have undergone independent domestication, and which may have traits that will be useful for transfer to soybean. Methods of translating information between species in the Phaseoleae range from design of markers for marker assisted selection, to transformation with Agrobacterium or with other experimental transformation methods.

Liu J.-Z.,Iowa State University | Horstman H.D.,Iowa State University | Braun E.,Iowa State University | Graham M.A.,Iowa State University | And 8 more authors.
Plant Physiology | Year: 2011

Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly downregulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species. © 2011 American Society of Plant Biologists. All Rights Reserved.

Sekhon R.S.,University of Wisconsin - Madison | Hirsch C.N.,University of Minnesota | Childs K.L.,Michigan State University | Breitzman M.W.,University of Wisconsin - Madison | And 6 more authors.
Plant Physiology | Year: 2014

Seed size is a component of grain yield and an important trait in crop domestication. To understand the mechanisms governing seed size in maize (Zea mays), we examined transcriptional and developmental changes during seed development in populations divergently selected for large and small seed size from Krug, a yellow dent maize cultivar. After 30 cycles of selection, seeds of the large seed population (KLS30) have a 4.7-fold greater weight and a 2.6-fold larger size compared with the small seed population (KSS30). Patterns of seed weight accumulation from the time of pollination through 30 d of grain filling showed an earlier onset, slower rate, and earlier termination of grain filling in KSS30 relative to KLS30. This was further supported by transcriptome patterns in seeds from the populations and derived inbreds. Although the onset of key genes was earlier in small seeds, similar maximum transcription levels were observed in large seeds at later stages, suggesting that functionally weaker alleles, rather than transcript abundance, may be the basis of the slow rate of seed filling in KSS30. Gene coexpression networks identified several known genes controlling cellularization and proliferation as well as novel genes that will be useful candidates for biotechnological approaches aimed at altering seed size in maize and other cereals. © 2014 American Society of Plant Biologists. All rights reserved.

Cannon E.K.S.,Iowa State University | Cannon S.B.,Corn Insects and Crop Genetics Research Unit
International Journal of Plant Genomics | Year: 2011

CViT (chromosome visualization tool) is a Perl utility for quickly generating images of features on a whole genome at once. It reads GFF3-formated data representing chromosomes (linkage groups or pseudomolecules) and sets of features on those chromosomes. It can display features on any chromosomal unit system, including genetic (centimorgan), cytological (centiMcClintock), and DNA unit (base-pair) coordinates. CViT has been used to track sequencing progress (status of genome sequencing, location and number of gaps), to visualize BLAST hits on a whole genome view, to associate maps with one another, to locate regions of repeat densities to display syntenic regions, and to visualize centromeres and knobs on chromosomes. Copyright © 2011 Ethalinda K. S. Cannon and Steven B. Cannon.

Yi G.,Iowa State University | Lauter A.M.,Corn Insects and Crop Genetics Research Unit | Paul Scott M.,Iowa State University | Paul Scott M.,Corn Insects and Crop Genetics Research Unit | Becraft P.W.,Iowa State University
Plant Physiology | Year: 2011

The maize (Zea mays) aleurone layer occupies the single outermost layer of the endosperm. The defective kernel1 (dek1) gene is a central regulator required for aleurone cell fate specification. dek1 mutants have pleiotropic phenotypes including lack of aleurone cells, aborted embryos, carotenoid deficiency, and a soft, floury endosperm deficient in zeins. Here we describe the thick aleurone1 (thk1) mutant that defines a novel negative function in the regulation of aleurone differentiation. Mutants possess multiple layers of aleurone cells as well as aborted embryos. Clonal sectors of thk1 mutant tissue in otherwise normal endosperm showed localized expression of the phenotype with sharp boundaries, indicating a localized cellular function for the gene. Sectors in leaves showed expanded epidermal cell morphology but the mutant epidermis generally remained in a single cell layer. Double mutant analysis indicated that the thk1 mutant is epistatic to dek1 for several aspects of the pleiotropic dek1 phenotype. dek1 mutant endosperm that was mosaic for thk1 mutant sectors showed localized patches of multilayered aleurone. Localized sectors were surrounded by halos of carotenoid pigments and double mutant kernels had restored zein profiles. In sum, loss of thk1 function restored the ability of dek1 mutant endosperm to accumulate carotenoids and zeins and to differentiate aleurone. Therefore the thk1 mutation defines a negative regulator that functions downstream of dek1 in the signaling system that controls aleurone specification and other aspects of endosperm development. The thk1 mutation was found to be caused by a deletion of approximately 2 megabases. © 2011 American Society of Plant Biologists.

Woody J.L.,Iowa State University | Shoemaker R.C.,Corn Insects and Crop Genetics Research Unit
Frontiers in Genetics | Year: 2011

Genomic architecture appears to be a largely unexplored component of gene expression. That architecture can be related to chromatin domains, transposable element neighborhoods, epigenetic modifications of the genome, and more. Although surely not the end of the story, we are learning that when it comes to gene expression, size is also important. We have been surprised to find that certain patterns of expression, tissue specific versus constitutive, or high expression versus low expression, are often associated with physical attributes of the gene and genome. Multiple studies have shown an inverse relationship between gene expression patterns and various physical parameters of the genome such as intron size, exon size, intron number, and size of intergenic regions. An increase in expression level and breadth often correlates with a decrease in the size of physical attributes of the gene. Three models have been proposed to explain these relationships. Contradictory results were found in several organisms when expression level and expression breadth were analyzed independently. However, when both factors were combined in a single study a novel relationship was revealed. At low levels of expression, an increase in expression breadth correlated with an increase in genic, intergenic, and intragenic sizes. Contrastingly, at high levels of expression, an increase in expression breadth inversely correlated with the size of the gene. In this article we explore the several hypotheses regarding genome physical parameters and gene expression. © 2011 Woody and Shoemaker.

Loading Corn Insects and Crop Genetics Research Unit collaborators
Loading Corn Insects and Crop Genetics Research Unit collaborators