Time filter

Source Type

Hannover, Germany

Wang S.,Leibniz University of Hanover | Oldenhof H.,University of Veterinary Medicine Hannover | Dai X.,Leibniz University of Hanover | Haverich A.,Hannover Medical School | And 3 more authors.
Biochimica et Biophysica Acta - Proteins and Proteomics | Year: 2014

Decellularized tissues can be used as matrix implants. The aims of this study were to investigate protein stability and solvent accessibility in decellularized pulmonary heart valve tissues. Protein denaturation profiles of tissues were studied by differential scanning calorimetry. Protein solvent accessibility of tissue exposed to D2O, and diffusion kinetics of various protective molecules were studied by Fourier transform infrared spectroscopy. Little changes were observed in the protein denaturation temperature during storage, at either 5 or 40 C. Glycerol was found to stabilize proteins; it increased the protein denaturation temperature. The stabilizing effect of glycerol disappeared after washing the sample with saline solution. Hydrogen-to-deuterium exchange rates of protein amide groups were fastest in leaflet tissue, followed by artery and muscle tissue. Diffusion of glycerol was found to be fastest in muscle tissue, followed by artery and leaflet tissue. Diffusion coefficients were derived and used to estimate the time needed to reach saturation. Fixation of tissue with glutaraldehyde had little effects on exchange and diffusion rates. Diffusion rates decreased with increasing molecular size. Proteins in decellularized heart valve tissue are stable during storage. Glycerol increases protein stability in a reversible manner. Solvent accessibility studies of protein amide groups provide an additional tool to study proteins in tissues. Diffusion coefficients can be derived to simulate diffusion kinetics of protective molecules in tissues. This study provides novel tools to evaluate protein stability and solvent accessibility in tissues, which can be used to develop biopreservation strategies. © 2013 Elsevier B.V. Source

Wang S.,Leibniz University of Hanover | Goecke T.,Hannover Medical School | Meixner C.,Corlife GbR | Haverich A.,Hannover Medical School | And 2 more authors.
Tissue Engineering - Part C: Methods | Year: 2012

In this study, structure and biomechanical properties of freeze-dried decellularized porcine pulmonary heart valves were investigated. Heart valves were dissected from porcine hearts. The tissues were decellularized and separated in three groups: (1) without lyoprotectant, (2) with 5% sucrose, and (3) with a mixture of 2.5% sucrose and 2.5% hydroxyl ethylene starch (HES), and then underwent freeze-drying. Freeze-drying in the absence of lyoprotectants caused an overall more disintegrated appearance of the histological architecture of the porcine valves, especially between the fibrosa and the ventricularis layers. Freeze-dried tissues with lyoprotectants have a looser network of collagen and elastic fibers with bigger pore sizes. Tissue freeze-dried in the absence of lyoprotecants had the largest pore sizes, whereas the tissue freeze-dried in the presence of protectants showed pores of intermediate sizes between the decellularized tissue and the unprotected freeze-dried samples. Tissue freeze-dried with sucrose alone displayed less porosity than tissue freeze-dried with the sucrose/HES mixture, whereas no significant differences in biomechanical properties were observed. Decellularization decreased the elastic modulus of artery tissue. The elastic modulus of freeze-dried tissue without protectants resembled that of decellularized tissue. The elastic modulus values of freeze-dried tissue stabilized by lyoprotectants were greater than those of decellularized tissue, but similar to those of native tissue. © 2012. Mary Ann Liebert, Inc. Source

Wang S.,Leibniz University of Hanover | Oldenhof H.,University of Veterinary Medicine Hannover | Goecke T.,Hannover Medical School | Ramm R.,Hannover Medical School | And 4 more authors.
Tissue Engineering - Part C: Methods | Year: 2015

Decellularized heart valves can be used as starter matrix implants for heart valve replacement therapies in terms of guided tissue regeneration. Decellularized matrices ideally need to be long-term storable to assure off-the-shelf availability. Freeze-drying is an attractive preservation method, allowing storage at room temperature in a dried state. However, the two inherent processing steps, freezing and drying, can cause severe damage to extracellular matrix (ECM) proteins and the overall tissue histoarchitecture and thus impair biomechanical characteristics of resulting matrices. Freeze-drying therefore requires a lyoprotective agent that stabilizes endogenous structural proteins during both substeps and that forms a protective glassy state at room temperature. To estimate incubation times needed to infiltrate decellularized heart valves with the lyoprotectant sucrose, temperature-dependent diffusion studies were done using Fourier transform infrared spectroscopy. Glycerol, a cryoprotective agent, was studied for comparison. Diffusion of both protectants was found to exhibit Arrhenius behavior. The activation energies of sucrose and glycerol diffusion were found to be 15.9 and 37.7?kJ·mol-1, respectively. It was estimated that 4?h of incubation at 37°C is sufficient to infiltrate heart valves with sucrose before freeze-drying. Application of a 5% sucrose solution was shown to stabilize acellular valve scaffolds during freeze-drying. Such freeze-dried tissues, however, displayed pores, which were attributed to ice crystal damage, whereas vacuum-dried scaffolds in comparison revealed no pores after drying and rehydration. Exposure to a hygroscopic sucrose solution (80%) before freeze-drying was shown to be an effective method to diminish pore formation in freeze-dried ECMs: matrix structures closely resembled those of control samples that were not freeze-dried. Heart valve matrices were shown to be in a glassy state after drying, suggesting that they can be stored at room temperature. © Copyright 2015, Mary Ann Liebert, Inc. 2015. Source

Boer U.,Hannover Medical School | Spengler C.,Hannover Medical School | Klingenberg M.,Hannover Medical School | Jonigk D.,Hannover Medical School | And 5 more authors.
International Journal of Artificial Organs | Year: 2013

Purpose: Disinfection of biological implants is indispensable for clinical safety. Here, decellularized equine carotid arteries (dECAs) were disinfected by polyhexanide (PHX), an effective, well-tolerated and nontoxic wound disinfectant and evaluated as vascular grafts for their repopulation and local biocompatibility in vivo. Methods: dECAs were terminally disinfected by a combination of 0.1% PHX and 70% ethanol (dECA_ PHX-ET) or exclusively ethanol (dECA-ET) and subsequently implanted as arteriovenous shunts in sheep for 14 weeks. Repopulation was determined by immunohistochemistry for endothelial- (ECs) or smooth muscle cells (SMCs) using antibodies against CD31 and smooth muscle actin. Histological evaluation was performed on HE-stained sections. Cytotoxicity of dECAs was measured directly by seeding the scaffolds with L-929 fibroblasts, which were visualized by calcein staining. Indirect cytotoxicity was determined by WST-8 viability assay by incubation of L-929 with dECA extracts. Results: dECA_PHX-ET completely lacked repopulation with ECs and SMCs, showed leukocyte infiltration, strong calcification and poor neovascularization indicating insufficient biocompatibility and inflammatory graft degeneration. PHX-treatment reduced cell viability to 33.2 ± 12.6% and disturbed cell growth at direct contact. In contrast, dECA_ET had no direct cytotoxic effect and only slightly influenced cell viability (82.9 ± 12.5%), showed a substantial repopulation by ECs and SMCs including neovascularization, and were only slightly calcified. Conclusion: The disinfectant polyhexanide seems to exert severe cytotoxic effects when used for the processing of decellularized matrices and may result in degenerative graft deterioration. In contrast, dECAs exclusively disinfected with ethanol were well integrated. Thus, ethanol seems to be a more suitable tool for graft processing than polyhexanide. © 2012 Wichtig Editore. Source

Boer U.,GMP Model Laboratory for Tissue Engineering | Boer U.,Hannover Medical School | Spengler C.,GMP Model Laboratory for Tissue Engineering | Jonigk D.,Hannover Medical School | And 11 more authors.
Tissue Engineering - Part A | Year: 2013

Decellularized equine carotid arteries (dEAC) are potential alternatives to alloplastic vascular grafts although there are certain limitations in biocompatibility and immunogenicity. Here, dEAC were coated with the matricellular protein CCN1 and evaluated in vitro for its cytotoxic and angiogenic effects and in vivo for cellular repopulation, local biocompatibility, neovascularization, and immunogenicity in a sheep model. CCN1 coating resulted in nontoxic matrices not compromising viability of L929 fibroblasts and endothelial cells (ECs) assessed by WST-8 assay. Functionality of CCN1 was maintained as it induced typical changes in fibroblast morphology and MMP3 secretion. For in vivo testing, dEAC±CCN1 (n=3 each) and polytetrafluoroethylene (PTFE) protheses serving as controls (n=6) were implanted as cervical arteriovenous shunts. After 14 weeks, grafts were harvested and evaluated immunohistologically. PTFE grafts showed a patency rate of only 33% and lacked cellular repopulation. Both groups of bioartificial grafts were completely patent and repopulated with ECs and smooth muscle cells (SMCs). However, whereas dEAC contained only patch-like aggregates of SMCs and a partial luminal lining with ECs, CCN1-coated grafts showed multiple layers of SMCs and a complete endothelialization. Likewise, CCN1 coating reduced leukocyte infiltration and fibrosis and supported neovascularization. In addition, in a three-dimensional assay, CCN1 coating increased vascular tube formation in apposition to the matrix 1.6-fold. Graft-specific serum antibodies were increased by CCN1 up to 6 weeks after implantation (0.89±0.03 vs. 1.08±0.04), but were significantly reduced after 14 weeks (0.85±0.04 vs. 0.69±0.02). Likewise, restimulated lymphocyte proliferation was significantly lower after 14 weeks (1.78±0.09 vs. 1.32±0.09-fold of unstimulated). Thus, CCN1 coating of biological scaffolds improves local biocompatibility and accelerates scaffold remodeling by enhancing cellular repopulation and immunologic tolerance, making it a promising tool for generation of bioartificial vascular prostheses. © 2013, Mary Ann Liebert, Inc. Source

Discover hidden collaborations