Langenfeld, Germany
Langenfeld, Germany

Time filter

Source Type

An system for treating arterial occlusive disease with rotating cutting baskets whose outer diameter can be infinitely adjusted to adjust by the operator for precise excision of plaque buildup in the body vessel.


A deflecting guide catheter for use in minimally invasive medical procedure such as the treatment of mitral valve regurgitation by reshaping the mitral valve annulus using one or more plications of annular or adjacent tissue each fixed by a retainer is described. The catheter includes an elongated tubular portion having various durometers along its length and at least one puller wire attached to an anchor band near the distal end. The deflecting guide catheter is used to provide a means for guiding a plication device or other medical instrument into a desired position within the vasculature or heart chambers of a patient.


A biocompatible metallic material may be configured into any number of implantable medical devices, including intraluminal stents. The biocompatible metallic material may comprise a magnesium alloy. The magnesium alloy implantable medical device may be designed to degrade over a given period of time. In order to control the degradation time, the device may be coated or otherwise have affixed thereto one or more coatings, one of which comprises a material for controlling the degradation time and maintain a pH neutral environment proximate the device. Additionally, therapeutic agents may be incorporated into one or more of the coatings on the implantable medical device.


Patent
Cordis Corporation | Date: 2015-06-19

Described are various embodiments of an improved endoprosthesis with a device to mitigate or even eliminate Type I endoleaks in AAA stent-graft.


Patent
Cordis Corporation | Date: 2016-07-13

A balloon catheter or stent delivery system for medical treatment of a patient has a proximal hub (12), a balloon (16), and a shaft (14). The catheter shaft has a rapid-exchange configuration, and a tubular outer body (24) that includes a hypotube (48) extending from the catheter proximal end to a position at or near a proximal leg of the balloon. An inner tubular body (26) defines a guidewire lumen extending from a distal guidewire port (30) at the catheter distal end to a proximal port (18) located at a position between the balloon and the hub The hypotube has an aperture for accepting the inner body proximal end, and a circumferential cut pattern. The cut pattern adds flexibility, and may extend from the hypotube distal end to a position proximal of the proximal guidewire port


Medical devices, and in particular implantable medical devices, may be coated to minimize or substantially eliminate a biological organisms reaction to the introduction of the medical device to the organism. The medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may also further reduce a biological organisms reaction to the introduction of the medical device to the organism. In addition, these therapeutic drugs, agents and/or compounds may be utilized to promote healing, including the formation of blood clots. The drugs, agents, and/or compounds may also be utilized to treat specific diseases, including vulnerable plaque. Therapeutic agents may also be delivered to the region of a disease site. In regional delivery, liquid formulations may be desirable to increase the efficacy and deliverability of the particular drug. Also, the devices may be modified to promote endothelialization. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned. In addition, the devices utilized to deliver the implantable medical devices may be modified to reduce the potential for damaging the implantable medical device during deployment. Medical devices include stents, grafts, anastomotic devices, perivascular wraps, sutures and staples. In addition, various polymer combinations may be utilized to control the elution rates of the therapeutic drugs, agents and/or compounds from the implantable medical devices.


An expandable, implantable medical device, such as an intraluminal stent (10) fabricated from polymeric materials, includes a plurality of elongated struts (16) in consecutive series and alternating stress concentration junctions (18) interconnecting ends of adjacent struts (16). When the stent (10) is in an expanded condition, the adjacent struts (16) form expanded substantial V- shapes and stresses are concentrated within the junctions (18). The junctions (18) define pivot points (P) for the respective attached, adjacent struts (16). Each of the pivot points (P) is located substantially on a line bisecting the V -shapes formed by the struts (16), when the stent (10) is expanded.


Patent
Cordis Corporation | Date: 2016-04-13

Fluid delivery systems capable of introducing first and second fluids into the first and second lumens of a multi-lumen catheter are provided. The first and second fluids are generally a dissolution fluid and a dissolution fluid attenuating fluid. Also provided are fluid delivery and kits that include the subject systems. The subject fluid delivery systems find use in a variety of different applications, and a particularly suited for use in the chemical ablation of internal vascular lesions.


Patent
Cordis Corporation | Date: 2016-04-13

Fluid delivery systems capable of introducing first and second fluids into the first and second lumens of a multi-lumen catheter are provided. The first and second fluids are generally a dissolution fluid and a dissolution fluid attenuating fluid. Also provided are fluid delivery and kits that include the subject systems. The subject fluid delivery systems find use in a variety of different applications, and a particularly suited for use in the chemical ablation of internal vascular lesions.


Patent
Cordis Corporation | Date: 2015-02-16

A method, including advancing a guidewire having a first diameter through a patient lumen, the guidewire being tracked by an electromagnetic system and an impedance system. While advancing the guidewire, signals of both systems, that are generated in response to differing positions of the guidewire in the lumen, are recorded. The method includes recording correspondences between the signals at each of the differing positions. The method also includes withdrawing the guidewire from the lumen, and then advancing through the lumen a second guidewire, having a second diameter smaller than the first diameter, which is tracked by the impedance system. While advancing the second guidewire, a signal of the impedance system generated in response to advancement of the second guidewire in the lumen is received. The method includes applying the correspondences to the signal in order to determine a position of the second guidewire in the lumen.

Loading Cordis Corporation collaborators
Loading Cordis Corporation collaborators