Time filter

Source Type


Marinaccio A.,Unit of Occupational and Environmental Epidemiology | Binazzi A.,Unit of Occupational and Environmental Epidemiology | Bonafede M.,Unit of Occupational and Environmental Epidemiology | Corfiati M.,Unit of Occupational and Environmental Epidemiology | And 74 more authors.
Occupational and Environmental Medicine | Year: 2015

Introduction Italy produced and imported a large amount of raw asbestos, up to the ban in 1992, with a peak in the period between 1976 and 1980 at about 160 000 tons/year. The National Register of Mesotheliomas (ReNaM, "Registro Nazionale dei Mesoteliomi" in Italian), a surveillance system of mesothelioma incidence, has been active since 2002, operating through a regional structure. Methods The Operating Regional Center (COR) actively researches cases and defines asbestos exposure on the basis of national guidelines. Diagnostic, demographic and exposure characteristics of non-occupationally exposed cases are analysed and described with respect to occupationally exposed cases. Results Standardised incidence rates for pleural mesothelioma in 2008 were 3.84 (per 100 000) for men and 1.45 for women, respectively. Among the 15 845 mesothelioma cases registered between 1993 and 2008, exposure to asbestos fibres was investigated for 12 065 individuals (76.1%), identifying 530 (4.4%) with familial exposure (they lived with an occupationally exposed cohabitant), 514 (4.3%) with environmental exposure to asbestos (they lived near sources of asbestos pollution and were never occupationally exposed) and 188 (1.6%) exposed through hobby-related or other leisure activities. Clusters of cases due to environmental exposure are mainly related to the presence of asbestos-cement industry plants (Casale Monferrato, Broni, Bari), to shipbuilding and repair activities (Monfalcone, Trieste, La Spezia, Genova) and soil contamination (Biancavilla in Sicily). Conclusions Asbestos pollution outside the workplace contributes significantly to the burden of asbestos-related diseases, suggesting the need to prevent exposures and to discuss how to deal with compensation rights for malignant mesothelioma cases induced by nonoccupational exposure to asbestos. Source

Corfiati M.,Epidemiology Unit | Scarselli A.,Epidemiology Unit | Binazzi A.,Epidemiology Unit | Di Marzio D.,Epidemiology Unit | And 75 more authors.
BMC Cancer | Year: 2015

Background: Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM). Methods: In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster. Results: Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters. Conclusions: Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs. © 2015 Corfiati et al.; licensee BioMed Central. Source

Discover hidden collaborations