Copenhagen, Denmark
Copenhagen, Denmark

The University of Copenhagen is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University . The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and more than 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, of whom about half come from Nordic countries.The university is a member of the prestigious International Alliance of Research Universities , along with University of Cambridge, University of Oxford, Yale University, The Australian National University, and UC Berkeley, amongst others. The Academic Ranking of World Universities, compiled by Shanghai Jiao Tong University, saw the University of Copenhagen as the leading university in Scandinavia and ranked 39th best university in the world in 2014. It is ranked 45th in the 2014 QS World University Rankings and 13th in Europe. Moreover, in 2013, according to the University Ranking by Academic Performance, the University of Copenhagen is the best university in Denmark and the 25th university in the world. The university has had 8 alumni become Nobel laureates and has produced one Turing Award recipient. Wikipedia.


Time filter

Source Type

Johansen J.V.,Copenhagen University
Nature Medicine | Year: 2017

Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressive complex 2 (PRC2), a multiprotein complex responsible for the methylation of H3 at lysine 27 (H3K27me), by binding to its catalytic subunit EZH2. Although DIPGs with the H3K27M mutation show global loss of H3K27me3, several genes retain H3K27me3. Here we describe a mouse model of DIPG in which H3K27M potentiates tumorigenesis. Using this model and primary patient-derived DIPG cell lines, we show that H3K27M-expressing tumors require PRC2 for proliferation. Furthermore, we demonstrate that small-molecule EZH2 inhibitors abolish tumor cell growth through a mechanism that is dependent on the induction of the tumor-suppressor protein p16INK4A. Genome-wide enrichment analyses show that the genes that retain H3K27me3 in H3K27M cells are strong polycomb targets. Furthermore, we find a highly significant overlap between genes that retain H3K27me3 in the DIPG mouse model and in human primary DIPGs expressing H3K27M. Taken together, these results show that residual PRC2 activity is required for the proliferation of H3K27M-expressing DIPGs, and that inhibition of EZH2 is a potential therapeutic strategy for the treatment of these tumors. © 2017 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC1-PM-04-2016 | Award Amount: 10.41M | Year: 2017

Early life is an important window of opportunity to improve health across the full lifecycle. European pregnancy and child cohort studies together offer an unique opportunity to identify a wide range of early life stressors linked with individual biological, developmental and health trajectory variations, and to the onset and evolution of non-communicable diseases. LIFECYCLE will establish the EuroCHILD Cohort Network, which brings together existing, successful pregnancy and child cohorts and biobanks, by developing a governance structure taking account of national and European ethical, legal and societal implications, a shared data-management platform and data-harmonization strategies. LIFECYCLE will enrich this EuroCHILD Cohort Network by generating new integrated data on early life stressors related to socio-economic, migration, urban environment and life-style determinants, and will capitalize on these data by performing hypothesis-driven research on early life stressors influencing cardio-metabolic, respiratory and mental health trajectories during the full lifecycle, and the underlying epigenetic mechanisms. LIFECYCLE will translate these results into recommendations for targeted strategies and personalized prediction models to improve health trajectories for current and future Europeans generations by optimizing their earliest phase of life. To strengthen this long-term collaboration, LIFECYCLE will organize yearly international meetings open to pregnancy and child cohort researchers, introduce a Fellowship Training Programme for exchange of junior researchers between European pregnancy or child cohorts, and develop e-learning modules for researchers performing life-course health studies. Ultimately, LIFECYCLE will lead to a unique sustainable EuroCHILD Cohort Network, and provide recommendations for targeted prevention strategies by identification of novel markers of early life stressors related to health trajectories throughout the lifecycle.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.01M | Year: 2017

Europe has become a global leader in optical-near infrared astronomy through excellence in space and ground-based experimental and theoretical research. While the major infrastructures are delivered through major national and multi-national agencies (ESO, ESA) their continuing scientific competitiveness requires a strong community of scientists and technologists distributed across Europes nations. OPTICON has a proven record supporting European astrophysical excellence through development of new technologies, through training of new people, through delivering open access to the best infrastructures, and through strategic planning for future requirements in technology, innovative research methodologies, and trans-national coordination. Europes scientific excellence depends on continuing effort developing and supporting the distributed expertise across Europe - this is essential to develop and implement new technologies and ensure instrumentation and infrastructures remain cutting edge. Excellence depends on continuing effort to strengthen and broaden the community, through networking initiatives to include and then consolidate European communities with more limited science expertise. Excellence builds on training actions to qualify scientists from European communities which lack national access to state of the art research infrastructures to compete successfully for use of the best available facilities. Excellence depends on access programmes which enable all European scientists to access the best infrastructures needs-blind, purely on competitive merit. Global competitiveness and the future of the community require early planning of long-term sustainability, awareness of potentially disruptive technologies, and new approaches to the use of national-scale infrastructures under remote or robotic control. OPTICON will continue to promote this excellence, global competitiveness and long-term strategic planning.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EINFRA-11-2016 | Award Amount: 16.11M | Year: 2017

PRACE, the Partnership for Advanced Computing is the permanent pan-European High Performance Computing service providing world-class systems for world-class science. Systems at the highest performance level (Tier-0) are deployed by Germany, France, Italy and Spain providing researchers with over 11 billion core hours of compute time. HPC experts from 25 member states enabled users from academia and industry to ascertain leadership and remain competitive in the Global Race. Currently PRACE is in transition to PRACE 2, the successor of the initial five year period. The objectives of PRACE-5IP are to build on and seamlessly continue the successes of PRACE and start new innovative and collaborative activities proposed by the consortium. These include: assisting the transition to PRACE 2 including an analysis of Trans National Access; strengthening the internationally recognised PRACE brand; continuing and extend advanced training which so far provided more than 18 800 persontraining days; preparing strategies and best practices towards Exascale computing; coordinating and enhancing the operation of the multi-tier HPC systems and services; and supporting users to exploit massively parallel systems and novel architectures. A high level Service Catalogue is provided. The proven project structure will be used to achieve each of the objectives in 6 dedicated work packages. The activities are designed to increase Europes research and innovation potential especially through: seamless and efficient Tier-0 services and a pan-European HPC ecosystem including national capabilities; promoting take-up by industry and new communities and special offers to SMEs; implementing a new flexible business model for PRACE 2; proposing strategies for deployment of leadership systems; collaborating with the ETP4HPC, CoEs and other European and international organisations on future architectures, training, application support and policies. This will be monitored through a set of KPIs.


Borregaard N.,Copenhagen University
Immunity | Year: 2010

Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms. © 2010 Elsevier Inc.


The morbidity and mortality of patients with the chronic Philadelphia-negative myeloproliferative neoplasms (MPNs), essential thrombocythemia, polycythemia vera, and primary myelofibrosis are mainly caused by cardiovascular diseases, thrombohemorrhagic complications, and bone marrow failure because of myelofibrosis and leukemic transformation. In the general population, chronic inflammation is considered of major importance for the development of atherosclerosis and cancer. MPNs are characterized by a state of chronic inflammation, which is proposed to be the common denominator for the development of "premature atherosclerosis," clonal evolution, and second cancer in patients with MPNs. Chronic inflammation may both initiate clonal evolution and catalyze its expansion from early disease stage to the myelofibrotic burnt-out phase. Furthermore, chronic inflammation may also add to the severity of cardiovascular disease burden by accelerating the development of atherosclerosis, which is well described and recognized in other chronic inflammatory diseases. A link between chronic inflammation, atherosclerosis, and second cancer in MPNs favors early intervention at the time of diagnosis (statins and interferon-α2), the aims being to dampen chronic inflammation and clonal evolution and thereby also diminish concurrent disease-mediated chronic inflammation and its consequences (accelerated atherosclerosis and second cancer). © 2012 by The American Society of Hematology.


Couchman J.R.,Copenhagen University
Annual Review of Cell and Developmental Biology | Year: 2010

Virtually allmetazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules. Copyright © 2010 by Annual Reviews. All rights reserved.


Astrup A.,Copenhagen University
American Journal of Clinical Nutrition | Year: 2014

Dairy products contribute important nutrients to our diet, including energy, calcium, protein, and other micro- and macronutrients. However, dairy products can be high in saturated fats, and dietary guidelines generally recommend reducing the intake of saturated fatty acids (SFAs) to reduce coronary artery disease (CAD). Recent studies question the role of SFAs in cardiovascular disease (CVD) and have found that substitution of SFAs in the diet with omega-6 (n-6) polyunsaturated fatty acids abundant in vegetable oils can, in fact, lead to an increased risk of death from CAD and CVD, unless they are balanced with n-3 polyunsaturated fat. Replacing SFAs with carbohydrates with a high glycemic index is also associated with a higher risk of CAD. Paradoxically, observational studies indicate that the consumption of milk or dairy products is inversely related to incidence of CVD. The consumption of dairy products has been suggested to ameliorate characteristics of the metabolic syndrome, which encompasses a cluster of risk factors including dyslipidemia, insulin resistance, increased blood pressure, and abdominal obesity, which together markedly increase the risk of diabetes and CVD. Dairy products, such as cheese, do not exert the negative effects on blood lipids as predicted solely by the content of saturated fat. Calcium and other bioactive components may modify the effects on LDL cholesterol and triglycerides. Apart from supplying valuable dairy nutrients, yogurt may also exert beneficial probiotic effects. The consumption of yogurt, and other dairy products, in observational studies is associated with a reduced risk of weight gain and obesity as well as of CVD, and these findings are, in part, supported by randomized trials. © 2014 American Society for Nutrition.


In this study, we report the results from the largest cohort to date of newly diagnosed adult immune thrombocytopenia patients randomized to treatment with dexamethasone alone or in combination with rituximab. Eligible were patients with platelet counts ≤25×10(9)/L or ≤50×10(9)/L with bleeding symptoms. A total of 133 patients were randomly assigned to either dexamethasone 40 mg/day for 4 days (n = 71) or in combination with rituximab 375 mg/m(2) weekly for 4 weeks (n = 62). Patients were allowed supplemental dexamethasone every 1 to 4 weeks for up to 6 cycles. Our primary end point, sustained response (ie, platelets ≥50×10(9)/L) at 6 months follow-up, was reached in 58% of patients in the rituximab + dexamethasone group vs 37% in the dexamethasone group (P = .02). The median follow-up time was 922 days. We found longer time to relapse (P = .03) and longer time to rescue treatment (P = .007) in the rituximab + dexamethasone group. There was an increased incidence of grade 3 to 4 adverse events in the rituximab + dexamethasone group (P = .04). In conclusion, rituximab + dexamethasone induced higher response rates and longer time to relapse than dexamethasone alone. This study is registered at http://clinicaltrials.gov as NCT00909077.


Moller B.L.,Copenhagen University
Science | Year: 2010

The assembly and disassembly of enzymes complexes may differentiate plant defense responses to insect attack and fungal infection.

Loading Copenhagen University collaborators
Loading Copenhagen University collaborators