Time filter

Source Type

Li C.,Shanghai University | Qiao Z.,Shanghai University | Qi W.,Shanghai University | Qi W.,Coordinated Crop Biology Research Center | And 9 more authors.
Plant Cell | Year: 2015

Opaque2 (O2) is a transcription factor that plays important roles during maize endosperm development. Mutation of the O2 gene improves the nutritional value of maize seeds but also confers pleiotropic effects that result in reduced agronomic quality. To reveal the transcriptional regulatory framework of O2, we studied the transcriptome of o2 mutants using RNA sequencing (RNA-Seq) and determined O2 DNA binding targets using chromatin immunoprecipitation coupled to highthroughput sequencing (ChIP-Seq). The RNA-Seq analysis revealed 1605 differentially expressed genes (DEGs) and 383 differentially expressed long, noncoding RNAs. The DEGs cover a wide range of functions related to nutrient reservoir activity, nitrogen metabolism, stress resistance, etc. ChIP-Seq analysis detected 1686 O2 DNA binding sites distributed over 1143 genes. Overlay of the RNA-Seq and ChIP-Seq results revealed 35 O2-modulated target genes. We identified four O2 binding motifs; among them, TGACGTGG appears to be the most conserved and st ongest. We confirmed that, except for the 16-and 18-kD zeins, O2 directly regulates expression of all other zeins. O2 directly regulates two transcription factors, genes linked to carbon and amino acid metabolism and abiotic stress resistance. We built a hierarchical regulatory model for O2 that provides an understanding of its pleiotropic biological effects. © 2015 American Society of Plant Biologists.


Wang G.,Shanghai University | Wang G.,Coordinated Crop Biology Research Center | Zhang J.,Shanghai University | Fan X.,Shanghai University | And 8 more authors.
Plant Cell | Year: 2014

Proline, an important amino acid, accumulates in many plant species. Besides its role in plant cell responses to environmental stresses, the potential biological functions of proline in growth and development are unclear. Here, we report cloning and functional characterization of the maize (Zea mays) classic mutant proline responding1 (pro1) gene. This gene encodes a Δ1-pyrroline-5- carboxylate synthetase that catalyzes the biosynthesis of proline from glutamic acid. Loss of function of Pro1 significantly inhibits proline biosynthesis and decreases its accumulation in the pro1 mutant. Proline deficiency results in an increased level of uncharged tRNApro AGG accumulation and triggers the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the pro1 mutant, leading to a general reduction in protein synthesis in this mutant. Proline deficiency also downregulates major cyclin genes at the transcriptional level, causing cell cycle arrest and suppression of cell proliferation. These processes are reversible when external proline is supplied to the mutant, suggesting that proline plays a regulatory role in the cell cycle transition. Together, the results demonstrate that proline plays an important role in the regulation of general protein synthesis and the cell cycle transition in plants. © 2014 American Society of Plant Biologists. All rights reserved.


Wang G.,Shanghai University | Qi W.,Coordinated Crop Biology Research Center | Wu Q.,Shanghai University | Yao D.,Shanghai University | And 5 more authors.
Plant Physiology | Year: 2014

Zeins are the major seed storage proteins in maize (Zea mays). They are synthesized on the endoplasmic reticulum (ER) and deposited into protein bodies. Failure of signal peptide cleavage from zeins can cause an opaque endosperm in the mature kernel; however, the cellular and molecular mechanisms responsible for this phenotype are not fully understood. In this study, we report the cloning and characterization of a novel, semidominant opaque mutant, floury4 (fl4). fl4 is caused by a mutated z1A 19-kD a-zein with defective signal peptide cleavage. Zein protein bodies in fl4 endosperm are misshapen and aggregated. Immunolabeling analysis indicated that fl4 participates in the assembly of zeins into protein bodies, disrupting their proper spatial distribution. ER stress is stimulated in fl4 endosperm, as illustrated by dilated rough ER and markedly up-regulated binding protein content. Further analysis confirmed that several ER stress pathways are induced in fl4 endosperm, including ERassociated degradation, the unfolded protein response, and translational suppression by the phosphorylation of eukaryotic translational initiation factor2 a-subunit. Programmed cell death is also elevated, corroborating the intensity of ER stress in fl4. These results provide new insights into cellular responses caused by storage proteins with defective signal peptides. © 2014 American Society of Plant Biologists. All rights reserved.


Yao D.,Shanghai University | Qi W.,Shanghai University | Qi W.,Coordinated Crop Biology Research Center | Li X.,Shanghai University | And 8 more authors.
PLoS Genetics | Year: 2016

Cereal storage proteins are major nitrogen sources for humans and livestock. Prolamins are the most abundant storage protein in most cereals. They are deposited into protein bodies (PBs) in seed endosperm. The inner structure and the storage mechanism for prolamin PBs is poorly understood. Maize opaque10 (o10) is a classic opaque endosperm mutant with misshapen PBs. Through positional cloning, we found that O10 encodes a novel cereal-specific PB protein. Its middle domain contains a seven-repeat sequence that is responsible for its dimerization. Its C terminus contains a transmembrane motif that is required for its ER localization and PB deposition. A cellular fractionation assay indicated that O10 is initially synthesized in the cytoplasm and then anchored to the ER and eventually deposited in the PB. O10 can interact with 19-kD and 22-kD α-zeins and 16-kD and 50-kD γ-zeins through its N-terminal domain. An immunolocalization assay indicated that O10 co-localizes with 16-kD γ-zein and 22-kD α-zein in PBs, forming a ring-shaped structure at the interface between the α-zein-rich core and the γ-zein-rich peripheral region. The loss of O10 function disrupts this ring-shaped distribution of 22-kD and 16-kD zeins, resulting in misshapen PBs. These results showed that O10, as a newly evolved PB protein, is essential for the ring-shaped distribution of 22-kD and 16-kD zeins and controls PB morphology in maize endosperm. © 2016 Yao et al.


Qi W.,Shanghai University | Qi W.,Coordinated Crop Biology Research Center | Zhu T.,Shanghai University | Tian Z.,Shanghai University | And 5 more authors.
BMC Biotechnology | Year: 2016

Background: CRISPR/Cas9 genome editing strategy has been applied to a variety of species and the tRNA-processing system has been used to compact multiple gRNAs into one synthetic gene for manipulating multiple genes in rice. Results: We optimized and introduced the multiplex gene editing strategy based on the tRNA-processing system into maize. Maize glycine-tRNA was selected to design multiple tRNA-gRNA units for the simultaneous production of numerous gRNAs under the control of one maize U6 promoter. We designed three gRNAs for simplex editing and three multiple tRNA-gRNA units for multiplex editing. The results indicate that this system not only increased the number of targeted sites but also enhanced mutagenesis efficiency in maize. Additionally, we propose an advanced sequence selection of gRNA spacers for relatively more efficient and accurate chromosomal fragment deletion, which is important for complete abolishment of gene function especially long non-coding RNAs (lncRNAs). Our results also indicated that up to four tRNA-gRNA units in one expression cassette design can still work in maize. Conclusions: The examples reported here demonstrate the utility of the tRNA-processing system-based strategy as an efficient multiplex genome editing tool to enhance maize genetic research and breeding. © 2016 The Author(s).


Qiao Z.,Shanghai University | Qi W.,Shanghai University | Qi W.,Coordinated Crop Biology Research Center | Wang Q.,Shanghai University | And 8 more authors.
PLoS Genetics | Year: 2016

Zeins, the predominent storage proteins in maize endosperm, are encoded by multiple genes and gene families. However, only a few transcriptional factors for zein gene regulation have been functionally characterized. In this study, a MADS-box protein, namely ZmMADS47, was identified as an Opaque2 (O2) interacting protein via yeast two-hybrid screening. The N-terminal portion of ZmMADS47 contains a nuclear localization signal (NLS), and its C-terminal portion contains a transcriptional activation domain (AD). Interestingly, the transcriptional activation activity is blocked in its full length form, suggesting conformational regulation of the AD. Molecular and RNA-seq analyses of ZmMADS47 RNAi lines revealed down regulation of α-zein and 50-kD γ-zein genes. ZmMADS47 binds the CATGT motif in promoters of these zein genes, but ZmMADS47 alone is not able to transactivate the promoters. However, when both O2 and ZmMADS47 are present, the transactivation of these promoters was greatly enhanced. This enhancement was dependent on the AD function of ZmMADS47 and the interaction between ZmMADS47 and O2, but it was independent from the AD function of O2. Therefore, it appears interaction with O2 activates ZmMADS47 on zein gene promoters. © 2016 Qiao et al.

Loading Coordinated Crop Biology Research Center collaborators
Loading Coordinated Crop Biology Research Center collaborators