Entity

Time filter

Source Type


Singh S.K.,CSIRO | Singh S.K.,Charles Sturt University | Singh S.K.,Cooperative Research Center for Plant Biosecurity | Ash G.J.,Charles Sturt University | Hodda M.,CSIRO
Biological Invasions | Year: 2014

Predicting which species will become invasive in each country or region before they arrive is necessary to devise and implement measures for minimising the costs of biological invasions. Metaphorically, this is keeping one step ahead of invasive species. A structured and systematic approach for screening large numbers of species and identifying those likely to become invasive is proposed in this paper. The Pest Screening and Targeting (PeST) framework integrates heterogeneous information and data on species biogeography, biotic and abiotic factors to first determine a preliminary risk index, then uses this index to identify species for a second, more detailed, risk evaluation process to provide a final ranking. Using the PeST framework, 97 species of plant-parasitic nematodes were evaluated for their biosecurity risks to Australia. The species identified as greatest risks included both previously unrecognised and currently-recognised species. The former included Heterodera zeae, Meloidogyne graminicola, M. enterolobii, M. chitwoodi and Scutellonema bradys, while the latter included Bursaphelenchus xylophilus, Ditylenchus destructor, Globodera pallida, Heterodera glycines and H. filipjevi. Of the ten criteria used in the PeST framework, emerging pest status, pathogenicity, host range and species biogeography most strongly influenced overall risk. The PeST framework also identified species where research to fill in critical knowledge gaps will be most beneficial (e.g. Globodera tabacum, Heterodera cajani, H. filipjevi, Meloidogyne ethiopica, Pratylenchus fallax and P. sudanensis). Where data were available, the information and associated metadata gathered for the PeST framework can be used to guide biosecurity decision making; determine species which require pre border certification and target sampling at the borders. © 2014 Springer International Publishing Switzerland. Source


Singh S.K.,CSIRO | Singh S.K.,Charles Sturt University | Singh S.K.,Cooperative Research Center for Plant Biosecurity | Ash G.J.,Charles Sturt University | Hodda M.,CSIRO
Biological Invasions | Year: 2015

Predicting which species will become invasive in each country or region before they arrive is necessary to devise and implement measures for minimising the costs of biological invasions. Metaphorically, this is keeping one step ahead of invasive species. A structured and systematic approach for screening large numbers of species and identifying those likely to become invasive is proposed in this paper. The Pest Screening and Targeting (PeST) framework integrates heterogeneous information and data on species biogeography, biotic and abiotic factors to first determine a preliminary risk index, then uses this index to identify species for a second, more detailed, risk evaluation process to provide a final ranking. Using the PeST framework, 97 species of plant-parasitic nematodes were evaluated for their biosecurity risks to Australia. The species identified as greatest risks included both previously unrecognised and currently-recognised species. The former included Heterodera zeae, Meloidogyne graminicola, M. enterolobii, M. chitwoodi and Scutellonema bradys, while the latter included Bursaphelenchus xylophilus, Ditylenchus destructor, Globodera pallida, Heterodera glycines and H. filipjevi. Of the ten criteria used in the PeST framework, emerging pest status, pathogenicity, host range and species biogeography most strongly influenced overall risk. The PeST framework also identified species where research to fill in critical knowledge gaps will be most beneficial (e.g. Globodera tabacum, Heterodera cajani, H. filipjevi, Meloidogyne ethiopica, Pratylenchus fallax and P. sudanensis). Where data were available, the information and associated metadata gathered for the PeST framework can be used to guide biosecurity decision making; determine species which require pre border certification and target sampling at the borders. © 2014, Springer International Publishing Switzerland. Source


Singh S.K.,CSIRO | Singh S.K.,Graham Center for Agricultural Innovation | Singh S.K.,Cooperative Research Center for Plant Biosecurity | Hodda M.,CSIRO | And 2 more authors.
Annals of Applied Biology | Year: 2013

Few species of plant-parasitic nematodes (PPN) are currently recognised as invasive but this is largely because of insufficient investigation and recognition. We compared the characteristics of PPN with those of invasive species generally, using the propagule pressure, abiotic and biotic factors (PAB) framework. Most PPN had many of the characteristics of invasive species and hence have the potential to become invasive. The most common characteristics included: adaptations for human mediated dispersal; multiple entry pathways; microscopic size; large number of propagules; high fecundity; many or cosmopolitan hosts; short lifecycle; ability to survive harsh or unfavourable conditions; ability to vary sex ratios; and ability to overcome host plant resistance. Information is lacking for many characteristics of many species and their impacts remain unquantified, which leaves some important unanswered questions and challenges for assessing PPN as invasive species. However many economically important PPN species have not been recognised as invasive, even when most of the known characteristics and data suggests they should be. © 2013 Association of Applied Biologists. Source


Kriticos D.J.,CSIRO | Kriticos D.J.,Charles Sturt University | Kriticos D.J.,Cooperative Research Center for Plant Biosecurity | Le Maitre D.C.,South African Council for Scientific and Industrial Research | And 2 more authors.
Journal of Biogeography | Year: 2013

A recent review by Dormann et al. (2012, Journal of Biogeography, 39, 2119-2131) has proposed that methods for the modelling of species distributions be considered as a continuum. We disagree with this thesis, and contend that attempting to present the diverse range of methods as a continuum is unhelpful and ultimately not convincing. It adds to the confusion about the strengths and weaknesses of the diversity of available modelling methods, what exactly it is that they model, and the most appropriate applications. We highlight variation within and between modelling methods that is obscured by the continuum framework and propose that context of application and clarity of method are critical elements for future discourse on the topic. © 2013 Blackwell Publishing Ltd. Source


Cui F.,Kansas State University | Cui F.,CAS Institute of Zoology | Cui F.,Cooperative Research Center for Plant Biosecurity | Michael Smith C.,Kansas State University | And 4 more authors.
Insect Science | Year: 2012

The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), is a major pest of small grains. As with plant-feeding aphids in general, the interaction between RWA and host plants is governed, on the insect side, by proteins and enzymes in saliva. In this work, we examined sequence variations in transcripts encoding proteins and enzymes of RWA salivary glands. We conducted reverse transcription - polymerase chain reaction in RWA biotypes 1 and 2 using primers derived from pea aphid orthologs, and cloned regions of 17 putative salivary gland transcripts. For four of the transcripts, we observed no difference in sequences between the two biotypes. For the other 13 transcripts, for example, the transcripts encoding sucrase, trehalase and protein C002, large amount of variations, both within each biotype and between the two biotypes, were observed. Usually the two biotypes shared only one variant, which was typically the most common variant in both biotypes. Most of the transcripts had more non-synonymous than synonymous codon changes among their variants. Our results offer possible molecular markers for distinguishing the two biotypes and insights into their evolution. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences. Source

Discover hidden collaborations