Cooperative Innovation Center for Sustainable Pig Production

Wuhan, China

Cooperative Innovation Center for Sustainable Pig Production

Wuhan, China
Time filter
Source Type

Ying F.,Huazhong Agricultural University | Gu H.,Huazhong Agricultural University | Xiong Y.,Huazhong Agricultural University | Zuo B.,Huazhong Agricultural University | Zuo B.,Cooperative Innovation Center for Sustainable Pig Production
BioMed Research International | Year: 2017

Adipose tissue was the major energy deposition site of the mammals and provided the energy for the body and released the external pressure to the internal organs. In animal production, fat deposition in muscle can affect the meat quality, especially the intramuscular fat (IMF) content. Diacylglycerol acyltransferase-1 (DGAT1) was the key enzyme to control the synthesis of the triacylglycerol in adipose tissue. In order to better understand the regulation mechanism of the DGAT1 in the intramuscular fat deposition, the global gene expression profiling was performed in gastrocnemius muscle between DGAT1 transgenic mice and wild-type mice by microarray. 281 differentially expressed transcripts were identified with at least 1.5-fold change and the p value < 0.05. 169 transcripts were upregulated and 112 transcripts were downregulated. Ten genes (SREBF1, DUSP1, PLAGL1, FKBP5, ZBTB16, PPP1R3C, CDC14A, GLUL, PDK4, and UCP3) were selected to validate the reliability of the chip's results by the real-time PCR. The finding of RT-PCR was consistent with the gene chip. Seventeen signal pathways were analyzed using KEGG pathway database and the pathways concentrated mainly on the G-protein coupled receptor protein signaling pathway, signal transduction, oxidation-reduction reaction, olfactory receptor activity, protein binding, and zinc ion binding. This study implied a function role of DGAT1 in the synthesis of TAG, insulin resistance, and IMF deposition. Copyright © 2017 Fei Ying et al.

Wang Y.,Huazhong Agricultural University | Li J.,Huazhong Agricultural University | Zhang A.,Huazhong Agricultural University | Zhu W.,Huazhong Agricultural University | And 6 more authors.
Journal of Proteomics | Year: 2017

Erysipelothrix rhusiopathiae is a ubiquitous pathogen that has caused considerable economic losses to pig farmers. However, the mechanisms of E. rhusiopathiae pathogenesis remain unclear. To identify new virulence-associated factors, the differentially abundant cell wall-associated proteins (CWPs) between high- and low-virulence strains were investigated through isobaric Tags for Relative and Absolute Quantitation (iTRAQ) combined with liquid chromatography-quadrupole mass spectrometry (LC-MS/MS). In total, 100 CWPs showed significant differences in abundance. Selected differences were verified by western blotting to support the iTRAQ data. Among the differential proteins, the proteins with higher abundance in the high-virulence strain were mostly ABC transporter proteins and adhesion proteins, and the proteins with lower abundance in the high-virulence strain were mainly stress-response proteins. The more abundant proteins in the high-virulence strain may be related to bacterial virulence. The iTRAQ results showed that the abundance of the sugar ABC transporter substrate-binding protein Sbp (No. 5) was higher by 1.73-fold. We further constructed an sbp-deletion mutant. Experiments in animal models showed that the sbp-deletion mutant caused decreased mortality. Together, our data indicated that transporter proteins and adhesion proteins may play important roles in E. rhusiopathiae virulence and confirmed that sbp contributed to the virulence of E. rhusiopathiae. Biological significance: To our knowledge, this is the first proteomic analysis comparing differentially abundant CWPs between high- and low-virulence E. rhusiopathiae strains by iTRAQ. We generated comprehensive and accurate lists of E. rhusiopathiae CWPs proteomes and identified many differences at the protein level. Among the differential proteins with higher abundance in the high-virulence strain, sbp was verified to contribute to the virulence of E. rhusiopathiae through the construction of an sbp-deletion mutant. The differential proteins with higher abundance in the high-virulence strain identified in the present study should provide a foundation for future evaluation of virulence factors. © 2017 Elsevier B.V.

Deng B.,Wuhan Institute of Technology | Zhang F.,Huazhong Agricultural University | Wen J.,Wuhan University of Technology | Ye S.,Wuhan Institute of Technology | And 5 more authors.
Nutrition and Metabolism | Year: 2017

Myostatin (MSTN), also referred to as growth and differentiation factor-8, is a protein secreted in muscle tissues. Researchers believe that its primary function is in negatively regulating muscle because a mutation in its coding region can lead to the famous double muscle trait in cattle. Muscle and adipose tissue develop from the same mesenchymal stem cells, and researchers have found that MSTN is expressed in fat tissues and plays a key role in adipogenesis. Interestingly, MSTN can exert a dual function, either inhibiting or promoting adipogenesis, according to the situation. Due to its potential function in controlling body fat mass, MSTN has attracted the interest of researchers. In this review, we explore its function in regulating adipogenesis in mammals, including preadipocytes, multipotent stem cells and fat mass. © 2017 The Author(s).

Hu X.,Cooperative Innovation Center for Sustainable Pig Production | Jiang S.,Huazhong Agricultural University | Jiang S.,Cooperative Innovation Center for Sustainable Pig Production | Peng J.,Cooperative Innovation Center for Sustainable Pig Production
Open Biology | Year: 2016

Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells. Bcl6 is enriched in preadipose versus non-preadipose fibroblasts and shows upregulated expression in the early stage of adipogenesis. Gainand loss-of-function studies revealed that Bcl6 acts as a key regulator of adipose commitment and differentiation both in vitro and ex vivo. RNAi-mediated knockdown of Bcl6 in C3H10T1/2 cells greatly inhibited adipogenic potential, whereas Bcl6 overexpression enhanced adipogenic differentiation. This transcription factor also directly or indirectly targets and controls the expression of some early and late adipogenic regulators (i.e. Zfp423, Zfp467, KLF15, C/EBPd, C/EBPa and PPARg). We further identified that Bcl6 transactivated the signal transducers and activators of transcription 1 (STAT1), which was determined as a required factor for adipogenesis. Moreover, overexpression of STAT1 rescued the impairment of adipogenic commitment and differentiation induced by Bcl6 knockdown in C3H10T1/2 cells, thereby confirming that STAT1 is a downstream direct target of Bcl6. This study identifies Bcl6 as a positive transcriptional regulator of early adipose commitment. © 2016 The Authors.

PubMed | Yangtze University, Centers for Disease Control and Prevention and Cooperative Innovation Center for Sustainable Pig Production
Type: Journal Article | Journal: Genetics and molecular research : GMR | Year: 2016

The exotoxin SLT-IIeB from the Escherichia coli Ee strain was expressed in E. coli, and the recombinant protein was purified, mixed with the Ee strain, then emulsified with oil-emulsion adjuvants to obtain a mixed subunit bacterin. Groups of Kunming mice were immunized at weeks 0 and 2, and challenged intraperitoneally with the Ee strain at week 4. Antibodies were detected by ELISA and an agglutination test. After the second immunization, the antibody level increased and the rate of immune protection against the Ee strain was 70 and 91.7% in the subunit bacterin and bacterin groups, respectively. Therefore, the mixed subunit bacterin provided good protection against the homologous Ee strain, which provides a basis for further research, into high-efficacy vaccines against porcine edema disease.

Wang D.,Huazhong Agricultural University | Wang D.,Cooperative Innovation Center for Sustainable Pig Production | Wang D.,Washington State University | Xi J.,Biogas Institute of Ministry of Agriculture | And 8 more authors.
Bioresource Technology | Year: 2016

Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24 days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55 °C, 17% solid concentration and 24 days. 58.6% of glucose conversion, 142.8 g/kg of methane yield and 65.2 g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416 kJ/kg. © 2016 Elsevier Ltd.

Wei X.,Huazhong Agricultural University | Wei X.,Cooperative Innovation Center for Sustainable Pig Production | Cheng X.,Huazhong Agricultural University | Peng Y.,Huazhong Agricultural University | And 8 more authors.
International Journal of Biochemistry and Cell Biology | Year: 2016

Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis. © 2016 Elsevier Ltd. All rights reserved.

Peng X.,Huazhong Agricultural University | Song T.,Huazhong Agricultural University | Hu X.,Huazhong Agricultural University | Zhou Y.,Huazhong Agricultural University | And 7 more authors.
BioMed Research International | Year: 2015

It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs). Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%), efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40 ± 1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events. © 2015 Xuewu Peng et al.

Zheng L.,Huazhong Agricultural University | Wei H.,Huazhong Agricultural University | Wei H.,Cooperative Innovation Center for Sustainable Pig Production | Cheng C.,Huazhong Agricultural University | And 4 more authors.
British Journal of Nutrition | Year: 2016

The aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth performance in piglets. © The Authors 2016.

Yan G.,Huazhong Agricultural University | Yan G.,Cooperative Innovation Center for Sustainable Pig Production | Yan X.,Huazhong Agricultural University | Yan X.,Cooperative Innovation Center for Sustainable Pig Production
Biochimie | Year: 2015

Over the past few decades, proteomic research has seen unprecedented development due to technological advancement. However, whole-cell proteomics still has limitations with respect to sample complexity and the accuracy of determining protein locations. To deal with these limitations, several subcellular proteomic studies have been initiated. Nevertheless, compared to other subcellular proteomic fields, such as mitochondrial proteomics, ribosomal proteomics has lagged behind due to the long-held idea that the ribosome is just a translation machine. Recently, with the proposed ribosome filter hypothesis and subsequent studies of ribosome-specific regulatory capacity, ribosomal proteomics has become a promising chapter for both proteomic and ribosomal research. In this review, we discuss the current strategies and approaches in ribosomal proteomics and the efficacies as well as disadvantages of individual approaches for further improvement. © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM).

Loading Cooperative Innovation Center for Sustainable Pig Production collaborators
Loading Cooperative Innovation Center for Sustainable Pig Production collaborators