Time filter

Source Type

Hu X.,Cooperative Innovation Center for Sustainable Pig Production | Jiang S.,Huazhong Agricultural University | Jiang S.,Cooperative Innovation Center for Sustainable Pig Production | Peng J.,Cooperative Innovation Center for Sustainable Pig Production
Open Biology | Year: 2016

Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells. Bcl6 is enriched in preadipose versus non-preadipose fibroblasts and shows upregulated expression in the early stage of adipogenesis. Gainand loss-of-function studies revealed that Bcl6 acts as a key regulator of adipose commitment and differentiation both in vitro and ex vivo. RNAi-mediated knockdown of Bcl6 in C3H10T1/2 cells greatly inhibited adipogenic potential, whereas Bcl6 overexpression enhanced adipogenic differentiation. This transcription factor also directly or indirectly targets and controls the expression of some early and late adipogenic regulators (i.e. Zfp423, Zfp467, KLF15, C/EBPd, C/EBPa and PPARg). We further identified that Bcl6 transactivated the signal transducers and activators of transcription 1 (STAT1), which was determined as a required factor for adipogenesis. Moreover, overexpression of STAT1 rescued the impairment of adipogenic commitment and differentiation induced by Bcl6 knockdown in C3H10T1/2 cells, thereby confirming that STAT1 is a downstream direct target of Bcl6. This study identifies Bcl6 as a positive transcriptional regulator of early adipose commitment. © 2016 The Authors.


PubMed | Yangtze University, Cooperative Innovation Center for Sustainable Pig Production and U.S. Center for Disease Control and Prevention
Type: Journal Article | Journal: Genetics and molecular research : GMR | Year: 2016

The exotoxin SLT-IIeB from the Escherichia coli Ee strain was expressed in E. coli, and the recombinant protein was purified, mixed with the Ee strain, then emulsified with oil-emulsion adjuvants to obtain a mixed subunit bacterin. Groups of Kunming mice were immunized at weeks 0 and 2, and challenged intraperitoneally with the Ee strain at week 4. Antibodies were detected by ELISA and an agglutination test. After the second immunization, the antibody level increased and the rate of immune protection against the Ee strain was 70 and 91.7% in the subunit bacterin and bacterin groups, respectively. Therefore, the mixed subunit bacterin provided good protection against the homologous Ee strain, which provides a basis for further research, into high-efficacy vaccines against porcine edema disease.


Wang D.,Huazhong Agricultural University | Wang D.,Cooperative Innovation Center for Sustainable Pig Production | Wang D.,Washington State University | Xi J.,Biogas Institute of Ministry of Agriculture | And 8 more authors.
Bioresource Technology | Year: 2016

Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24 days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55 °C, 17% solid concentration and 24 days. 58.6% of glucose conversion, 142.8 g/kg of methane yield and 65.2 g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416 kJ/kg. © 2016 Elsevier Ltd.


Wei X.,Huazhong Agricultural University | Wei X.,Cooperative Innovation Center for Sustainable Pig Production | Cheng X.,Huazhong Agricultural University | Peng Y.,Huazhong Agricultural University | And 8 more authors.
International Journal of Biochemistry and Cell Biology | Year: 2016

Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis. © 2016 Elsevier Ltd. All rights reserved.


Peng X.,Huazhong Agricultural University | Song T.,Huazhong Agricultural University | Hu X.,Huazhong Agricultural University | Zhou Y.,Huazhong Agricultural University | And 7 more authors.
BioMed Research International | Year: 2015

It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs). Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%), efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40 ± 1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events. © 2015 Xuewu Peng et al.


Song T.,Huazhong Agricultural University | Song T.,Cooperative Innovation Center for Sustainable Pig Production | Peng J.,Huazhong Agricultural University | Peng J.,Cooperative Innovation Center for Sustainable Pig Production | And 4 more authors.
BioMed Research International | Year: 2015

The polyunsaturated fatty acids (PUFAs) receptor GPR120 exerts a significant impact on systemic nutrient homeostasis in human and rodents. However, the porcine GPR120 (pGPR120) has not been well characterized. In the current study, we found that pGPR120 had 3 spliced variants. Transcript 1 encoded 362-amino acids (aa) wild type pGPR120-WT, which shared 88% homology with human short form GPR120. Transcript 1 was the mainly expressed transcript of pGPR120. It was expressed predominantly in ileum, jejunum, duodenum, spleen, and adipose. Transcript 3 (coding 320-aa isoform) was detected in spleen, while the transcript 2 (coding 310-aa isoform) was only slightly expressed in spleen. A selective agonist for human GPR120 (TUG-891) and PUFAs activated SRE-luc and NFAT-luc reporter in HEK293T cells transfected with construct for pGPR120-WT but not pGPR120-V2. However, 320-aa isoform was not a dominant negative isoform. The extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation levels in cells transfected with construct for pGPR120-WT were well activated by PUFAs, especially n-3 PUFA. These results showed that although pGPR120 had 3 transcripts, transcript 1 which encoded pGPR120-WT was the mainly expressed transcript. TUG-891 and PUFAs, especially n-3 PUFA, well activated pGPR120-WT. The current study contributed to dissecting the molecular regulation mechanisms of n-3 PUFA in pigs. © 2015 Tongxing Song et al.


Zheng L.,Huazhong Agricultural University | Wei H.,Huazhong Agricultural University | Wei H.,Cooperative Innovation Center for Sustainable Pig Production | Cheng C.,Huazhong Agricultural University | And 4 more authors.
British Journal of Nutrition | Year: 2016

The aim of this study was to investigate whether supplementing branched-chain amino acids (AA) (BCAA) along with a reduced-protein diet increases piglet growth, and whether elevated feed intake and muscle growth-promoting effect contribute to this improvement. In Expt 1, twenty-eight weanling piglets were randomly fed one of the following four diets: a positive control (PC) diet, a reduced-protein negative control (NC) diet, an NC diet supplemented with BCAA to the same levels as in the PC diet (test 1 (T1)) and an NC diet supplemented with a 2-fold dose of BCAA in T1 diet (test 2 (T2)) for 28 d. In Expt 2, twenty-one weanling piglets were randomly assigned to NC, T1 and pair-fed T1 (P) groups. NC and T1 diets were the same as in Expt 1, whereas piglets in the P group were individually pair-fed with the NC group. In Expt 1, the NC group had reduced piglet growth and feed intake compared with the PC group, which were restored in T1 and T2 groups, but no differences were detected between T1 and T2 groups. In Expt 2, T1 and P groups showed increases in growth and mass of some muscles compared with the NC group. Increased feed intake after BCAA supplementation was associated with increased mRNA expressions of agouti-related peptide and co-express neuropeptide Y (NPY) and phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase 1 (S6K1), as well as decreased mRNA expressions of melanocortin-4 receptor and cocaine- and amphetamine-regulated transcript and phosphorylation of eukaryotic initiation factor 2α in the hypothalamus. No differences were observed among PC, T1 and T2 groups except for higher NPY mRNA expression in the T2 group than in the PC group (Expt 1). Phosphorylation of mTOR and S6K1 in muscle was enhanced after BCAA supplementation, which was independent of change in feed intake (Expt 2). In conclusion, supplementing BCAA to reduced-protein diets increases feed intake and muscle mass, and contributes to better growth performance in piglets. © The Authors 2016.


Zou Y.,Huazhong Agricultural University | Zou Y.,Cooperative Innovation Center for Sustainable Pig Production | Xiang Q.,Huazhong Agricultural University | Xiang Q.,Cooperative Innovation Center for Sustainable Pig Production | And 6 more authors.
BioMed Research International | Year: 2016

Oregano essential oil (OEO) has long been used to improve the health of animals, particularly the health of intestine, which is generally attributed to its antimicrobial and anti-inflammatory effects. However, how OEO acts in the intestine of pig is still unclear. This study was aimed at elucidating how OEO promotes the intestinal barrier integrity in a pig model. Pigs were fed a control diet alone or one supplemented with 25 mg/kg of OEO for 4 weeks. The OEO-treated pigs showed decreased (P < 0.05) endotoxin level in serum and increased (P < 0.05) villus height and expression of occludin and zonula occludens-1 (ZO-1) in the jejunum. These results demonstrated that the integrity of intestinal barrier was improved by OEO treatment. The OEO-treated pigs had a lower (P < 0.05) population of Escherichia coli in the jejunum, ileum, and colon than the control. This is in accordance with the greater inactivation (P < 0.05) of inflammation, which was reflected by the mitogen-activated protein kinase (MAPK), protein kinase B (Akt), and nuclear factor κB (NF-κB) signaling pathways and expression of inflammatory cytokines in the jejunum. Our results show that OEO promotes intestinal barrier integrity, probably through modulating intestinal bacteria and immune status in pigs. © 2016 Yi Zou et al.


Qian S.,Huazhong Agricultural University | Fan W.,Huazhong Agricultural University | Qian P.,Huazhong Agricultural University | Qian P.,Cooperative Innovation Center for Sustainable Pig Production | And 4 more authors.
Virology Journal | Year: 2016

Background: Seneca valley virus (SVV), a member of the Picornaviridae family, is a small non-enveloped RNA virus, that is linked to porcine idiopathic vesicular disease (PIVD). SVV infection in swine results in vesicular disease and epidemic transient neonatal losses (ETNL). The first case of SVV infection was reported in Guangdong, South China in 2015. Results: We isolated and characterized an SVV HB-CH-2016 strain from vesicular lesion tissue specimens from piglets with PIVD in Hubei, Central China. The complete genome sequence of SVV HB-CH-2016 strain shares high nucleotide identities (94 to 99 %) with all previously reported SVV genomes, moreover, the polyprotein accounts for 98-99 % of amino acid sequence identity. Therefore, the SVV HB-CH-2016 strain is closely related to the SVV CH-01-2015 strain. Conclusions: The case reported in this paper is the second SVV infection case in China. Our findings demonstrate that sporadic SVV infection has occurred in Central China, and therefore, active surveillance on the swine population is important. Moreover, veterinarians must pay attention to this vesicular disease and reinforce biosecurity measures and prevent SVV spread. © 2016 The Author(s).

Loading Cooperative Innovation Center for Sustainable Pig Production collaborators
Loading Cooperative Innovation Center for Sustainable Pig Production collaborators