Entity

Time filter

Source Type

Holtzheim, France

Patent
Cooltech Applications | Date: 2013-02-21

A magnetic field generator (


Patent
Cooltech Applications | Date: 2012-10-24

A magnetocaloric heat generator (


Patent
Cooltech Applications | Date: 2014-03-14

A thermal apparatus (


A one-piece part based on a magnetocaloric material not comprising an alloy comprising iron and silicon and a lanthanide is provided. The part comprises a base in a first plane defined by a first and second direction and a set of N unitary blades secured to the base; the blades having a first dimension in the first direction, a second dimension in the second direction and a third dimension in a third direction at right angles to the first and second dimensions; an ith blade being separated from an (i+1)th blade by an ith distance; the ratio between the second dimension and first dimension being at least 10; the ratio between the third dimension and first dimension being at least 6; the first dimension being the same order of magnitude as the distance separating an ith blade from an (i+1)th blade. A thermal generator comprising one-piece parts is provided.


A one-piece part based on magnetocaloric material comprising an alloy comprising iron and silicon and a lanthanide, comprises a base in a first plane defined by a first and second direction and N unitary blades secured to the base; the blades having a first and second dimension in the first and second direction, respectively, and a third dimension in a third direction at right angles to the first and second dimensions; an ith blade being separated from an (i+1)th blade by an ith distance; the ratio between the second dimension and first dimension being at least 10; the ratio between the third dimension and first dimension being at least 6; the first dimension being the same order of magnitude as the distance separating an ith blade from an (i+1)th blade. The magnetocaloric material can be rare-earth alloy or a composite material based on polymer binder and rare-earth alloy.

Discover hidden collaborations