Entity

Time filter

Source Type

Hanover, Germany

Continental AG, commonly known as Continental or Conti, is a leading German automotive manufacturing company specializing in tires, brake systems, automotive safety, powertrain and chassis components, tachographs, and other parts for the automotive and transportation industries. Continental is based in Hanover, Lower Saxony, Germany. Continental is the world's 4th largest tire manufacturer. Continental was founded in 1871 as a rubber manufacturer, Continental-Caoutchouc und Gutta-Percha Compagnie. After acquiring Siemens AG's VDO automotive unit in 2007 Continental was ranked fourth in global OEM automotive parts sales in 2009 according to a study sponsored by Ernst & Young LLP.In 2008, Continental appeared overextended with its integration of VDO and had since lost almost half of its market capitalization when it found itself to be the takeover target of the family-owned Schaeffler AG. By 2009 Schaeffler successfully installed the head of its motor division at the helm of Continental.On 6 September 2012, Continental returned to the benchmark DAX index of 30 selected German blue chip stocks after a 45-month absence. Schaeffler AG is the controlling shareholder and currently owns 49.9% of Continental shares. Wikipedia.


A vehicle-side, electronic charging device of a wireless battery charging system receives, converts and feeds energy into a rechargeable traction battery of an electric vehicle traction motor. The traction battery is charged by an external charging system via a wireless link and the vehicle-side charging device. The vehicle-side charging device includes a first LC resonant circuit between first and second output ports, and a current rectifier having first and second AC voltage inputs and first and second DC voltage outputs. Either (i) the first and second DC voltage outputs of the current rectifier, or (ii) the first and second AC voltage inputs of the current rectifier, or (iii) the first and the second output ports of the first LC resonant circuit, or (iv) a first and a second connection of the reception coil are switchably connected to one another via an actuable kill switch.


Patent
Continental AG | Date: 2015-12-11

In a method and a device for operating an internal combustion engine, with at least one cylinder (Z


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: MG-3.1-2014 | Award Amount: 9.46M | Year: 2015

Primary particulate matter (PM) consists of chemical components suspended in the atmosphere as aerosols, e.g. as a result of exhaust gaseous and friction processes (e.g. braking). Such particles may potentially contribute to smog events in urban areas and might be responsible of negative effects on the environment (e.g. acid rain acidification, toxic effects on plants and animals) and health (e.g. cancer, respiratory issues). The challenge is therefore to develop a new generation of transport technologies able to reduce the contribution of traffic related and total particulate matter, and, at the same time, to comply with future and stricter legislations on vehicles emissions and EU air quality. The LOWBRASYS project aims at demonstrating a novel and low environmental impact brake system that will reduce micro and nanoparticles emissions by at least 50%. The measurement and understanding of micrometer-sized and ultrafine particles and their effects on health and the environment will be improved and whilst providing recommendations to policy makers. This goal will only be achievable by a systematic and structured approach focused by the LOWBRASYS Team on the following targets: 1. Novel materials formulations of the brakes pad and disc in order to reduce the total particle emissions and have a low-environmental impact. 2. Innovation of environmental friendly braking strategies (control systems) that reduce PM emissions. 3. Breakthrough technology for collection of particles near the PM source in order to further dramatically reduce PM emissions. 5. System integration of the novel pad, components and control systems in vehicles. 6. Improvement of the measurement techniques and understanding of the brake wear PM effects on health and the environment through state-of-the-art non-in-vivo techniques and related policy recommendations. Recommendations to policy makers will also be provided by the Team given no current applicable legislation in Europe.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: GV-5-2014 | Award Amount: 6.71M | Year: 2015

EU-LIVE will provide a comprehensive European solution for the next generation of electrified, cost- and energy-efficient light urban vehicles to cope with the challenges of future personal urban mobility, based on both user needs and acceptance. EU-LIVE will establish the EU-LIVE modular platform, a systematic approach for efficiently designing, developing and building a wide range of L-category vehicles from more close-to-the-market to radically new ones. This comprises a set of modular electrified powertrain components and subsystems for PHEVs and BEVs, modular bodies (within the same L-vehicle class), and an integrated modular co-simulation platform to guarantee re-usability, flexibility and sharing of components as well as subsystems for L-category vehicles. EU-LIVE will provide innovative solutions regarding cost-efficient, energy-efficient, low-emission and low-noise powertrains (in-wheel motors, novel highly efficient transmission for PHEV, 48V batteries \ electric board net ) and future-proof, flexible and scalable vehicle architectures. To leverage expertise beyond the consortium, an open innovation contest for a radically new light vehicle based on the EU-LIVE modular platform will be carried out. Eventually, both real and virtual full-vehicle demonstrators (L5e PHEV 3-wheeler beyond EURO 5, L3e BEV 2-wheeler, L6 BEV 4-wheeler) will be shown. By its modular approach and the efficient transfer of expertise from high-volume automotive to low-to-medium-volume light vehicle industry, EU-LIVE will enable economies of scale, therefore overcoming a major barrier to affordable light urban vehicles. Through its excellent partner consortium - including 2 OEMs and several key suppliers - EU-LIVE is able to credibly provide a clear route to market for a range of different L-category vehicles which feature series producibility, attractive cost-of-ownership, full comfort, safety and connectivity, for both European and non-European markets.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: GV-2-2014 | Award Amount: 6.39M | Year: 2015

Optimised energy management and use (OPTEMUS) represents an opportunity for overcoming one of the biggest barriers towards large scale adoption of electric and plug-in hybrid cars: range limitation due to limited storage capacity of electric batteries. The OPTEMUS project proposes to tackle this bottleneck by leveraging low energy consumption and energy harvesting through a holistic vehicle-occupant-centred approach, considering space, cost and complexity requirements. Specifically, OPTEMUS intends to develop a number of innovative core technologies (Integrated thermal management system comprising the compact refrigeration unit and the compact HVAC unit, battery housing and insulation as thermal and electric energy storage, thermal energy management control unit, regenerative shock absorbers) and complementary technologies (localised conditioning, comprising the smart seat with implemented TED and the smart cover panels, PV panels) combined with intelligent controls (eco-driving and eco-routing strategies, predictive cabin preconditioning strategy with min. energy consumption, electric management strategy). The combined virtual and real-life prototyping and performance assessment in a state of the art, on-the-market A-segment electric vehicle (Fiat 500e) of this package of technologies will allow demonstrating a minimum of 32% of energy consumption reduction for component cooling and 60% for passenger comfort, as well as an additional 15% being available for traction, leading to an increase of the driving range in extreme weather conditions of at least 44 km (38%) in a hot ambient (\35C and 40% rH) and 63 km (70%) in a cold ambient (-10C and 90% rH).

Discover hidden collaborations