Entity

Time filter

Source Type


Li S.,Texas Tech University | Li S.,Continent Development | Anderson T.A.,Texas Tech University | Green M.J.,Texas Tech University | And 2 more authors.
Environmental Sciences: Processes and Impacts | Year: 2013

The batch equilibrium approach was used to examine the influence of multi-walled carbon nanotubes (MWNTs) on the sorption behaviors of polyaromatic hydrocarbons (PAHs) in soil. To the knowledge of the authors, this is the first study of PAH sorption to MWNTs in real natural soil systems. The sorption behavior of three PAHs (naphthalene, fluorene, and phenanthrene) in the presence of commercially available MWNTs in two natural soils (a sandy loam and a silt loam) and Ottawa sand was evaluated. Adsorption of PAHs by MWNTs in this study was three orders of magnitude higher than that of natural soils. Sorption coefficients of PAHs (Kd and Koc) were unchanged in the presence of 2 mg g-1 MWNTs in soil (p > 0.05). A micro-mechanics approach, termed 'the rule of mixtures' was used for predicting PAH sorption behaviors in mixtures based on sorption coefficients derived from single sorbents. The equation, KT = KMα + KN(1 - α) (K, sorption coefficients, Kd or Koc), predicted sorption coefficients in a mixture based on mixture component sorption coefficients and mass fractions. Data presented in this study could be used to fill data gaps related to the environmental fate of carbon nanotubes in soil. This journal is © The Royal Society of Chemistry. Source


Diedrich D.J.,Western Washington University | Diedrich D.J.,Colorado School of Mines | Sofield R.M.,Western Washington University | Ranville J.F.,Colorado School of Mines | And 3 more authors.
Archives of Environmental Contamination and Toxicology | Year: 2015

A series of toxicity tests were conducted to investigate the role of chronological age on zinc tolerance in juvenile brown trout (Salmo trutta). Four different incubation temperatures were used to control the maturation of the juveniles before zinc exposures. These 96-h exposures used flow-through conditions and four chronological ages of fish with weights ranging from 0.148 to 1.432 g. Time-to-death (TTD) data were collected throughout the exposure along with the final mortality. The results indicate that chronological age does not play a predictable role in zinc tolerance for juvenile brown trout. However, a relationship between zinc tolerance and fish size was observed in all chronological age populations, which prompted us to conduct additional exploratory data analysis to quantify how much of an effect size had during this stage of development. The smallest fish (0.148-0.423 g) were shown to be less sensitive than the largest fish (0.639-1.432 g) with LC50 values of 868 and 354 μg Zn/L, respectively. The Kaplan-Meier product estimation method was used to determine survival functions from the TTD data and supports the LC50 results with a greater median TTD for smaller fish than larger juvenile fish. These results indicate that fish size or a related characteristic may be a significant determinant of susceptibility and should be considered in acute zinc toxicity tests with specific attention paid to the expected exposure scenario in the field. © 2015 Springer Science+Business Media. Source


Li S.,Continent Development | Erickson R.J.,Continent Development | Wallis L.K.,Continent Development | Diamond S.A.,NanoSafe Inc. | Hoff D.J.,Continent Development
Environmental Pollution | Year: 2015

As a semiconductor with wide band gap energy, TiO2 nanoparticles (nano-TiO2) are highly photoactive, and recent efforts have demonstrated phototoxicity of nano-TiO2 to aquatic organisms. However, a dosimetry model for the phototoxicity of nanomaterials that incorporates both direct UV and photo-activated chemical toxicity has not yet been developed. In this study, a set of Hyalella azteca acute toxicity bioassays at multiple light intensities and nano-TiO2 concentrations, and with multiple diel light cycles, was conducted to assess how existing phototoxicity models should be adapted to nano-TiO2. These efforts demonstrated (a) adherence to the Bunsen-Roscoe law for the reciprocity of light intensity and time, (b) no evidence of damage repair during dark periods, (c) a lack of proportionality of effects to environmental nano-TiO2 concentrations, and (d) a need to consider the joint effects of nano-TiO2 phototoxicity and direct UV toxicity. © 2015 Elsevier Ltd. All rights reserved. Source


Ma H.,Continent Development | Ma H.,University of Wisconsin - Milwaukee | Wallis L.K.,Continent Development | Diamond S.,NanoSafe Inc. | And 3 more authors.
Environmental Pollution | Year: 2014

The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiation (SSR). Photocatalytic ROS generation and particle dissolution were measured on a time-course basis. Two toxicity mitigation assays using CaCl2 and N-acetylcysteine were performed to differentiate the relative importance of these two modes of action. Enhanced ZnO nanoparticle toxicity under SSR was in parallel with photocatalytic ROS generation and enhanced particle dissolution. Toxicity mitigation by CaCl2 to a less extent under SSR than under lab light demonstrates the role of ROS generation in ZnO toxicity. Toxicity mitigation by N-acetylcysteine under both irradiation conditions confirms the role of particle dissolution and ROS generation. These findings demonstrate the importance of considering environmental solar UV radiation when assessing ZnO nanoparticle toxicity and risk in aquatic systems. © 2014 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations