Entity

Time filter

Source Type

Murrysville, PA, United States

Stump D.G.,WIL Research Laboratories LLC | Beck M.J.,WIL Research Laboratories LLC | Radovsky A.,WIL Research Laboratories LLC | Garman R.H.,Consultants in Veterinary Pathology Inc. | And 10 more authors.
Toxicological Sciences | Year: 2010

This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD(SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively). © The Author 2010. Published by Oxford University Press on behalf of the Society of Toxicology. Source


Garman R.H.,Consultants in Veterinary Pathology Inc. | Li A.A.,Exponent, Inc. | Kaufmann W.,Merck KGaA | Auer R.N.,University of Quebec | Bolon B.,GEMpath Inc.
Toxicologic Pathology | Year: 2016

Neuropathology methods in rodent developmental neurotoxicity (DNT) studies have evolved with experience and changing regulatory guidance. This article emphasizes principles and methods to promote more standardized DNT neuropathology evaluation, particularly procurement of highly homologous brain sections and collection of the most reproducible morphometric measurements. To minimize bias, brains from all animals at all dose levels should be processed from brain weighing through paraffin embedding at one time using a counterbalanced design. Morphometric measurements should be anchored by distinct neuroanatomic landmarks that can be identified reliably on the faced block or in unstained sections and which address the region-specific circuitry of the measured area. Common test article-related qualitative changes in the developing brain include abnormal cell numbers (yielding altered regional size), displaced cells (ectopia and heterotopia), and/or aberrant differentiation (indicated by defective myelination or synaptogenesis), but rarely glial or inflammatory reactions. Inclusion of digital images in the DNT pathology raw data provides confidence that the quantitative analysis was done on anatomically matched (i.e., highly homologous) sections. Interpreting DNT neuropathology data and their presumptive correlation with neurobehavioral data requires an integrative weight-of-evidence approach including consideration of maternal toxicity, body weight, brain weight, and the pattern of findings across brain regions, doses, sexes, and ages. © The Author(s) 2015. Source


Melis V.,University of Aberdeen | Zabke C.,Charite - Medical University of Berlin | Stamer K.,Charite - Medical University of Berlin | Magbagbeolu M.,Charite - Medical University of Berlin | And 17 more authors.
Cellular and Molecular Life Sciences | Year: 2015

A poorly understood feature of the tauopathies is their very different clinical presentations. The frontotemporal lobar degeneration (FTLD) spectrum is dominated by motor and emotional/psychiatric abnormalities, whereas cognitive and memory deficits are prominent in the early stages of Alzheimer's disease (AD). We report two novel mouse models overexpressing different human tau protein constructs. One is a full-length tau carrying a double mutation [P301S/G335D; line 66 (L66)] and the second is a truncated 3-repeat tau fragment which constitutes the bulk of the PHF core in AD corresponding to residues 296-390 fused with a signal sequence targeting it to the endoplasmic reticulum membrane (line 1; L1). L66 has abundant tau pathology widely distributed throughout the brain, with particularly high counts of affected neurons in hippocampus and entorhinal cortex. The pathology is neuroanatomically static and declines with age. Behaviourally, the model is devoid of a higher cognitive phenotype but presents with sensorimotor impairments and motor learning phenotypes. L1 displays a much weaker histopathological phenotype, but shows evidence of neuroanatomical spread and amplification with age that resembles the Braak staging of AD. Behaviourally, the model has minimal motor deficits but shows severe cognitive impairments affecting particularly the rodent equivalent of episodic memory which progresses with advancing age. In both models, tau aggregation can be dissociated from abnormal phosphorylation. The two models make possible the demonstration of two distinct but nevertheless convergent pathways of tau molecular pathogenesis. L1 appears to be useful for modelling the cognitive impairment of AD, whereas L66 appears to be more useful for modelling the motor features of the FTLD spectrum. Differences in clinical presentation of AD-like and FTLD syndromes are therefore likely to be inherent to the respective underlying tauopathy, and are not dependent on presence or absence of concomitant APP pathology. © 2014 The Author(s). Source


Fidan E.,Safar Center for Resuscitation Research | Lewis J.,Safar Center for Resuscitation Research | Kline A.E.,Safar Center for Resuscitation Research | Kline A.E.,University of Pittsburgh | And 12 more authors.
Journal of Neurotrauma | Year: 2016

Although accumulating evidence suggests that repetitive mild TBI (rmTBI) may cause long-term cognitive dysfunction in adults, whether rmTBI causes similar deficits in the immature brain is unknown. Here we used an experimental model of rmTBI in the immature brain to answer this question. Post-natal day (PND) 18 rats were subjected to either one, two, or three mild TBIs (mTBI) or an equivalent number of sham insults 24 h apart. After one or two mTBIs or sham insults, histology was evaluated at 7 days. After three mTBIs or sham insults, motor (d1-5), cognitive (d11-92), and histological (d21-92) outcome was evaluated. At 7 days, silver degeneration staining revealed axonal argyrophilia in the external capsule and corpus callosum after a single mTBI, with a second impact increasing axonal injury. Iba-1 immunohistochemistry showed amoeboid shaped microglia within the amygdalae bilaterally after mTBI. After three mTBI, there were no differences in beam balance, Morris water maze, and elevated plus maze performance versus sham. The rmTBI rats, however, showed impairment in novel object recognition and fear conditioning. Axonal silver staining was observed only in the external capsule on d21. Iba-1 staining did not reveal activated microglia on d21 or d92. In conclusion, mTBI results in traumatic axonal injury and microglial activation in the immature brain with repeated impact exacerbating axonal injury. The rmTBI in the immature brain leads to long-term associative learning deficit in adulthood. Defining the mechanisms damage from rmTBI in the developing brain could be vital for identification of therapies for children. Copyright © 2016 Mary Ann Liebert, Inc. Source


Garman R.H.,Consultants in Veterinary Pathology Inc.
Toxicologic pathology | Year: 2011

The intent of this article is to assist pathologists inexperienced in examining central nervous system (CNS) sections to recognize normal and abnormal cell types as well as some common artifacts. Dark neurons are the most common histologic artifact but, with experience, can readily be distinguished from degenerating (eosinophilic) neurons. Neuron degeneration stains can be useful in lowering the threshold for detecting neuron degeneration as well as for revealing degeneration within populations of neurons that are too small to show the associated eosinophilic cytoplasmic alteration within H&E-stained sections. Neuron degeneration may also be identified by the presence of associated macroglial and microglial reactions. Knowledge of the distribution of astrocyte cytoplasmic processes is helpful in determining that certain patterns of treatment-related neuropil vacuolation (as well as some artifacts) represent swelling of these processes. On the other hand, vacuoles with different distribution patterns may represent alterations of the myelin sheath. Because brains are typically undersampled for microscopic evaluation, many pathologists are unfamiliar with the circumventricuar organs (CVOs) that represent normal brain structures but are often mistaken for lesions. Therefore, the six CVOs found in the brain are also illustrated in this article. Source

Discover hidden collaborations