Entity

Time filter

Source Type


Today more people than ever are threatened by disasters, with no regards if natural or man-made. Furthermore, CBRN contamination risks can occur as a consequence of these events. Regions affected are wider and wider and reconstruction and recovery operations are longer-lasting, costly and complex, especially when decontamination is necessary. DESTRIERO aims at developing a next generation post-crisis needs assessment tool for reconstruction and recovery planning, including structural damage assessment through advanced remote sensing enriched by in-field data collection by mobile devices (buildings, bridges, dams) and related data integration and analysis, based on international standards, novel (automated) data and information interoperability across organisations and systems, in combination with an advanced multi-criteria decision analysis tool and methodology for multi-stakeholder information analyses, priority setting, decision making and recovery planning. Earth observation images will contribute to fast damage assessment and monitoring of the areas, together with data acquired by relief units on the field using novel smart-phone apps. Identified needs will be recorded, stored and made available to all organisations involved. Coordination and collaborative work at all levels of the organisations and among different ones will be possible through a network centric approach for the interoperability of information and service and the decision support tool. Critical infrastructure recovery will be considered with priority, as essential for the recovery of social and economic aspects (roads, bridges, schools, hospitals, plants, etc.), CBRN contamination and humanitarian aspects will be taken into consideration, as aggravating circumstances, while support to accountability of humanitarian aid contributions will be facilitated.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: REFLECTIVE-2-2015 | Award Amount: 2.52M | Year: 2016

SIGN-HUB aims to provide the first comprehensive response to the societal and scientific challenge resulting from generalized neglect of the cultural and linguistic identity of signing Deaf communities in Europe. It will provide an innovative and inclusive resource hub for the linguistic, historical and cultural documentation of the Deaf communities heritage and for sign language assessment in clinical intervention and school settings. To this end, it will create an open state-of-the-art digital platform with customized accessible interfaces. The project will initially feed that platform with core content in the following domains, expandable in the future to other sign languages: (i) digital grammars of 6 sign languages, produced with a new online grammar writing tool; (ii) an interactive digital atlas of linguistic structures of the worlds sign languages; (iii) online sign language assessment instruments for education and clinical intervention, and (iv) the first digital archive of life narratives by elderly signers, subtitled and partially annotated for linguistic properties. These components, made available for the first time through a centralized platform to specialists and to the general public, will (a) help explore and value the identity and the cultural, historical and linguistic assets of Deaf signing communities, (b) advance linguistic knowledge on the natural languages of the Deaf and (c) impact on the diagnosis of language deficits within these minorities. SIGN-HUB will thus contribute to the dissemination and reuse of those assets in broader contexts, as part of European identity. The project is a critical attempt to rescue, showcase and boost that largely unknown part of our common heritage, as well as to ultimately enhance the full participation of Deaf citizens in all spheres of public life on an equal footing with hearing citizens.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SEC-2012.2.5-1 | Award Amount: 5.41M | Year: 2013

SAWSOC aims at bringing a significant advancement in the convergence of physical and logical security, meaning effective cooperation (i.e. a coordinated and results-oriented effort to work together) among previously disjointed functions. Recently some achievements have been made (e.g. SEM and SIM have merged into SIEM, and LACS and PACS have merged into IM), Security Operations Center (SOC) technology has improved significantly, but much is yet to be done. SAWSOC holistic approach and enhanced awareness technology will allow dependable (i.e. accurate, timely, and trustworthy) detection and diagnosis of attacks. This will ultimately result in the achievement of two goals of paramount importance, and precisely: 1) Guaranteeing the protection of citizens and assets, and 2) Improving the perception of security by citizens. Goal 1 is in line with the objectives of the Security Work Programme in general, and goal 2 perfectly matches the expected impact as listed in the Work Programme for Topic SEC-2012.2.5-1. SAWSOCs design will be driven by three real use cases, with highly diverse requirements. Such use cases collectively form an experimental test-bed perfectly suited for driving the design as well as for validating the development of a platform such as SAWSOC that will support true convergence of physical and logical security technologies, and overcome the fragmentation of security approaches. The first use case deals with the protection of a Critical Infrastructure for Air Traffic Management. The second deals with the protection of a Critical Infrastructure for Energy Production and Distribution. The third deals with the protection of a public place, specifically a stadium, during an event. The project will take stock of associated initiatives, which have a direct or indirect link with the topic (e.g.: topic SEC-2011.2.5-1 Cyber attacks against critical infrastructures, ESRAB and ESRIF), and will benefit of an enhanced SME participation in the Consortium, with three hi-tech SMEs from three different countries, playing relevant as well as complementary roles.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: SEC-2013.5.1-1 | Award Amount: 4.41M | Year: 2014

The management of crisis is one of the great challenges of the 21st century. The ever growing human, economic and environmental losses due to natural and man-made disasters evidence the need for a systematic approach to the management of crisis. A multi-disciplinary understanding and disaster risk management is required. In such situations, Collaborative Crisis Management (CCM) is usually coordinated by local authorities or dedicated civil protection organisations, supported by a variety of different national and international crisis management organisations, all acting relatively autonomously. The process is typically coordinated through periodic physical meetings of the involved organisations, in which information is shared about the situation, priorities are set and responsibilities allocated. Follow-up and execution of tasks is managed by each individual organisation, typically supported by a range of not interoperable information management tools, depending on the level of informatisation of the local or national crisis management systems. SECTOR aims at establishing the foundations of future Common CCM Information Spaces by expanding the European scientific knowledge base on (cross-border) multi-agency CCM processes and the complications these imply when aiming at setting-up and design cross-border supporting information Systems.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.1.1 | Award Amount: 4.58M | Year: 2012

Femtocell networks are currently seen as a new communication paradigm for the ever increasing ubiquitous wireless traffic demands. Being pervasive by nature, its proximity to the subscriber opens a new world of possibilities for the development of applications. Among them, cloud computing services demanded by smartphones could be moved from large server farms to HeNBs, provided that these are equipped with computational and storage resources, thus improving user experience on latency and download/upload speed. TROPIC addresses this scenario by exploiting advanced MP2MP communications schemes, innovative virtualization procedures, and a cross-layer approach to the allocation of resources understood in a wide sense: radio, computational/storage capacity and energy. TROPIC work programme includes the definition and characterization of the system level building blocks and their required interfaces for the implementation of a full system emulator and the development of a proof of concept platform.

Discover hidden collaborations