Time filter

Source Type

Valenzano, Italy

Denysenko T.,Neurosurgery | Gennero L.,Consorzio Carso Laboratories | Juenemann C.,Neurosurgery | Morra I.,Pathology | And 5 more authors.
Cell Biochemistry and Function | Year: 2014

Glioblastomas (GBMs) are the most lethal primary brain tumours. Increasing evidence shows that brain tumours contain the population of stem cells, so-called cancer stem cells (CSCs). Stem cell marker CD133 was reported to identify CSC population in GBM. Further studies have indicated that CD133 negative cells exhibiting similar properties and are able to initiate the tumour, self-renew and undergo multilineage differentiation. GBM is a highly heterogeneous tumour and may contain different stem cell populations with different functional properties. We characterized five GBM cell lines, established from surgical samples, according to the marker expression, proliferation and differentiation potential. CD133 positive cell lines showed increased proliferation rate in neurosphere condition and marked differentiation potential towards neuronal lineages. Whereas two cell lines low-expressing CD133 marker showed mesenchymal properties in vitro, that is high proliferation rate in serum condition and differentiation in mesenchymal cell types. Further, we compared therapy resistance capacity of GBM cell lines treated with hydroxyurea. Our results suggest that CSC concept is more complex than it was believed before, and CD133 could not define entire stem cell population within GBM. At least two different subtypes of GBM CSCs exist, which may have different biological characteristics and imply different therapeutic strategies. © 2013 John Wiley & Sons, Ltd.

Gennero L.,University of Turin | de Siena R.,Consorzio Carso Laboratories | Denysenko T.,University of Turin | Roos M.A.,University of Turin | And 9 more authors.
Cell Biochemistry and Function | Year: 2011

The particular combination of polydeoxyribonucleotides, l-carnitine, calcium ions, proteolytic enzyme and other ingredients acts in a synergetic way in the regeneration of skin and connective tissues. This new formulation of active principles was tested in vitro as a cell and tissue culture medium and in vivo for various preparations in support of tissue regeneration. In vitro, the new blend allowed the maintenance of skin biopsies for more than 1year in eutrophic conditions. Immunocytochemical analyses of fibroblasts isolated from these biopsies confirmed a significant increase of the epidermal and connective wound-healing markers such as collagen type I, collagen type IV, cytokeratin 1 (CK1), CK5, CK10 and CK14 versus controls. To examine the effects of the new compound in vivo, we studied impaired wound healing in genetically diabetic db/db mice. At day18, diabetic mice treated with the new composition showed 100% closure of wounds and faster healing than mice treated with the other solutions. This complex of vital continuity factors or life-keeping factors could be used as a tissue-preserving solution or a cosmetic/drug/medical device to accelerate wound healing in the treatment of patients with deficient wound repair to promote the regeneration of cutaneous and connective tissues (injuries-wound, dermatitis) and prevent the recurrent relapses. © 2011 John Wiley & Sons, Ltd.

Gennero L.,Consorzio Carso Laboratories | Denysenko T.,Consorzio Carso Laboratories | Vercelli A.,Small Animal Veterinary Clinic | Vercelli C.M.,Small Animal Veterinary Clinic | And 10 more authors.
Cell Biochemistry and Function | Year: 2013

The capacity of cartilage self-regeneration is considered to be limited. Joint injuries often evolve in the development of chronic wounds on the cartilage surface. Such lesions are associated with articular cartilage degeneration and osteoarthritis. Re-establishing a correct micro/macro-environment into damaged joints could stop or prevent the degenerative processes. This study investigated the effect of polydeoxyribonucleotides (PDRNs) on cartilage degradation in vitro and on cartilage extracted cells. The activities of matrix metalloproteinases 2 and 9 were measured in PDRN-treated cells and in controls at days 0 and 30 of culture. Human nasal cartilage explants were cultured, and the degree of proteoglycan degradation was assessed by measuring the amount of glycosaminoglycans released into the culture medium. The PDRN properties compared with controls were tested on cartilage tissues to evaluate deposition of extracellular matrix. Chondrocytes treated with PDRNs showed a physiological deposition of extracellular matrix (aggrecan and type II collagen: Western blot, IFA, fluorescence activated cell sorting, Alcian blue and safranin O staining). PDRNs were able to inhibit proteoglycan degradation in cartilage explants. The activities of matrix metalloproteinases 2 and 9 were reduced in all PDRN-treated samples. Our results indicate that PDRNs are suitable for a long-term cultivation of in vitro cartilage and have therapeutic effects on chondrocytes by protecting cartilage. © 2012 John Wiley & Sons, Ltd.

Discover hidden collaborations