Consolidated Safety Services Inc.

Fairfax, VA, United States

Consolidated Safety Services Inc.

Fairfax, VA, United States
Time filter
Source Type

Cooper P.S.,NCBI | Lipshultz D.,Lockheed Martin | Matten W.T.,Consolidated Safety Services Inc. | McGinnis S.D.,U.S. National Institutes of Health | And 5 more authors.
Briefings in Bioinformatics | Year: 2010

The National Center for Biotechnology Information (NCBI) hosts 39 literature and molecular biology databases containing almost half a billion records. As the complexity of these data and associated resources and tools continues to expand, so does the need for educational resources to help investigators, clinicians, information specialists and the general public make use of the wealth of public data available at the NCBI. This review describes the educational resources available at NCBI via the NCBI Education page ( These resources include materials designed for new users, such as About NCBI and the NCBI Guide, as well as documentation, Frequently Asked Questions (FAQs) and writings on the NCBI Bookshelf such as the NCBI Help Manual and the NCBI Handbook. NCBI also provides teaching materials such as tutorials, problem sets and educational tools such as the Amino Acid Explorer, PSSM Viewer and Ebot. NCBI also offers training programs including the Discovery Workshops, webinars and tutorials at conferences. To help users keep up-to-date, NCBI produces the online NCBI News and offers RSS feeds and mailing lists, along with a presence on Facebook, Twitter and YouTube. Published by Oxford University Press 2010.

Kendall M.S.,East-West Center | Poti M.,East-West Center | Poti M.,Consolidated Safety Services Inc. | Wynne T.T.,National Oceanic and Atmospheric Administration | And 4 more authors.
Marine Ecology Progress Series | Year: 2013

Many coral reef organisms possess a pelagic larval phase during which some larvae are retained near spawning sites and others are dispersed to more distant locations via ocean currents. Planktonic duration, distances traveled, and recruitment success can vary due to natural development rate, mortality rate, and sensory and swimming capabilities of particular taxa. Elevated water temperatures and acidification due to climate change can also influence recruitment by generally accelerating metabolism and growth, raising mortality rate, impairing development of calcified structures, and reducing sensory capabilities. We used hydrodynamic models and drifter data to investigate these various life history and climate-related influences on larval connectivity in and around the Samoan Archipelago. In general, virtual larvae spawned in the Samoan Archipelago seeded their natal reefs with relatively short-lived larvae, and their island neighbors to the west with longer-lived larvae. Larval duration, mortality rate, and sensory zone variables all had a significant effect on connectivity. Effect size was largest for mortality rate followed by larval duration. Shortened larval longevity due to climate change reduced interisland connectivity and changed the life history traits (and therefore taxa) that result in successful connections. Islands will generally become increasingly more reliant on self-seeding as the ocean warms, although the role of most islands primarily as a source or destination was robust to climate change. © Inter-Research 2013 ·

Costa B.M.,National Oceanic and Atmospheric Administration | Costa B.M.,Consolidated Safety Services Inc. | Battista T.A.,National Oceanic and Atmospheric Administration
International Journal of Remote Sensing | Year: 2013

Coral reef habitat maps describe the spatial distribution and abundance of tropical marine resources, making them essential for ecosystem-based approaches to planning and management. Typically, these habitat maps have been created from optical and acoustic remotely sensed imagery using manual, pixel- and object-based classification methods. However, past studies have shown that none of these classification methods alone are optimal for characterizing coral reef habitats for multiple management applications because the maps they produce (1) are not synoptic, (2) are time consuming to develop, (3) have low thematic resolutions (i.e. number of classes), or (4) have low overall thematic accuracies. To address these deficiencies, a novel, semi-automated object- and pixel-based technique was applied to multibeam echo sounder imagery to determine its utility for characterizing coral reef ecosystems. This study is not a direct comparison of these different methods but rather, a first attempt at applying a new classification technique to acoustic imagery. This technique used a combination of principal components analysis, edge-based segmentation, and Quick, Unbiased, and Efficient Statistical Trees (QUEST) to successfully partition the acoustic imagery into 35 distinct combinations of (1) major and (2) detailed geomorphological structure, (3) major and (4) detailed biological cover, and (5) live coral cover types. Thematic accuracies for these classes (corrected for proportional bias) were as follows: (1) 95.7%, (2) 88.7%, (3) 95.0%, (4) 74.0%, and (5) 88.3%, respectively. Approximately half of the habitat polygons were manually edited (hence the name 'semi-automated') due to a combination of mis-classifications by QUEST and noise in the acoustic data. While this method did not generate a map that was entirely reproducible, it does show promise for increasing the amount of automation with which thematically accurate benthic habitat maps can be generated from acoustic imagery. © 2013 Copyright This work was authored as part of the Contributors' official duties as Employees of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under US Law.

Simmonds S.E.,University of California at Los Angeles | Kinlan B.P.,Center for Coastal Monitoring and Assessment | Kinlan B.P.,Consolidated Safety Services Inc. | White C.,California Polytechnic State University, San Luis Obispo | And 3 more authors.
Marine Ecology Progress Series | Year: 2014

Using calcified structures as natural geochemical tags to estimate levels of population connectivity is becoming increasingly common. However, the technique suffers from several logistical and statistical problems that constrain its full application. Foremost is that only a subset of potential sources is sampled, often compounded by under-sampling within locations at an overly coarse spatial scale. This introduces unknown error and prevents the creation of a rangewide connectivity matrix. To address this issue, we analyzed the natural geochemical tags of embryonic statoliths in the whelk Kelletia kelletii (Forbes, 1850). We sampled from 23 sites over the entire geographic range in 2004 and 2005 from Monterey (California, USA) (36°N) to Isla Asunción, (Baja California, Mexico) (27°N). We then used geospatial statistics (kriging) to make continuous along-coast maps of embryonic statolith chemistry. This allowed us to estimate chemistry at unsampled locations. We used this new continuous assignment method to estimate the spatial error associated with assignment by the classic method of discriminant function analysis (DFA). Then, we compared the performance of the 2 methods at classifying unknown embryonic statoliths. We found large spatial errors often associated with DFA assignments, even when traditional DFA accuracy assessments indicated the method was performing well. The continuous method provided an improved assessment of uncertainty in assignments. It outperformed the DFA method in classifying unknown embryos to the vicinity of their true source. Geospatial statistics also provided useful information on other range-wide variables, such as adult reproductive abundance. As a proxy for larval supply, such information can aid future assignments of recruits. Our combined analyses help inform sampling designs and motivate the development of a new approach for population connectivity studies. © Inter-Research 2014.

Loading Consolidated Safety Services Inc. collaborators
Loading Consolidated Safety Services Inc. collaborators