Fremantle, Australia
Fremantle, Australia

Time filter

Source Type

Yamamoto F.,Stanford University | Hoglund B.,Hoffmann-La Roche | Fernandez-Vina M.,Stanford University | Tyan D.,Stanford University | And 7 more authors.
Human Immunology | Year: 2015

Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array™ is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing. © 2015 Published by Elsevier Inc.


Moonsamy P.V.,Hoffmann-La Roche | Williams T.,Childrens Hospital Oakland Research Institute | Bonella P.,Childrens Hospital Oakland Research Institute | Holcomb C.L.,Hoffmann-La Roche | And 11 more authors.
Tissue Antigens | Year: 2013

The human leukocyte antigen (HLA) class I and class II loci are the most polymorphic genes in the human genome; distinguishing the thousands of HLA alleles is challenging. Next generation sequencing of exonic amplicons with the 454 genome sequence (GS) FLX System and Conexio Assign ATF 454 software provides high resolution, high throughput HLA genotyping for eight class I and class II loci. HLA typing of potential donors for unrelated bone marrow donor registries typically uses a subset of these loci at high sample throughput and low cost per sample. The Fluidigm Access Array System enables the incorporation of 48 different multiplex identifiers (MIDs) corresponding to 48 genomic DNA samples with up to 48 different primer pairs in a microfluidic device generating 2304 parallel polymerase chain reactions (PCRs). Minimal volumes of reagents are used. During genomic PCR, in this 4-primer system, the outer set of primers containing the MID and the 454 adaptor sequences are incorporated into an amplicon generated by the inner HLA target-specific primers each containing a common sequence tag at the 5′ end of the forward and reverse primers. Pools of the resulting amplicons are used for emulsion PCR and clonal sequencing on the 454 Life Sciences GS FLX System, followed by genotyping with Conexio software. We have genotyped 192 samples with 100% concordance to known genotypes using 8 primer pairs (covering exons 2 and 3 of HLA-A, B and C, and exon 2 of DRB1, 3/4/5 and DQB1) and 96 MIDs in a single GS FLX run. An average of 166 reads per amplicon was obtained. We have also genotyped 96 samples at high resolution (14 primer pairs covering exons 2, 3, and 4 of the class I loci and exons 2 of DRB1, 3/4/5, DQA1, DQB1, DPB1, and exon 3 of DQB1), recovering an average of 173 sequence reads per amplicon. © 2013 John Wiley & Sons A/S.


Lind C.,Children's Hospital of Philadelphia | Ferriola D.,Children's Hospital of Philadelphia | Mackiewicz K.,Children's Hospital of Philadelphia | Heron S.,Children's Hospital of Philadelphia | And 11 more authors.
Human Immunology | Year: 2010

Human leukocyte antigen (HLA) typing has been a challenge for more than 50 years. Current methods (Sanger sequencing, sequence-specific primers [SSP], sequence-specific oligonucleotide probes [SSOP]) continue to generate ambiguities that are time-consuming and expensive to resolve. However, next-generation sequencing (NGS) overcomes ambiguity through the combination of clonal amplification, which provides on-phase sequence and a high level of parallelism, whereby millions of sequencing reads are produced enabling an expansion of the HLA regions sequenced. We explored HLA typing using NGS through a three-step process. First, HLA-A, -B, -C, -DRB1, and -DQB1 were amplified with long-range PCR. Subsequently, amplicons were sequenced using the 454 GS-FLX platform. Finally, sequencing data were analyzed with Assign-NG software. In a single experiment, four individual samples and two mixtures were sequenced producing >75 Mb of sequence from >300,000 individual sequence reads (average length, 244 b). The reads were aligned and covered 100% of the regions amplified. Allele assignment was 100% concordant with the known HLA alleles of our samples. Our results suggest this method can be a useful tool for complete genomic characterization of new HLA alleles and for completion of sequence for existing, partially sequenced alleles. NGS can provide complete, unambiguous, high-resolution HLA typing; however, further evaluation is needed to explore the feasibility of its routine use. © 2010 American Society for Histocompatibility and Immunogenetics.


Mack S.J.,Childrens Hospital Oakland Research Institute | Cano P.,University of Texas M. D. Anderson Cancer Center | Hollenbach J.A.,Childrens Hospital Oakland Research Institute | He J.,Soochow University of China | And 26 more authors.
Tissue Antigens | Year: 2013

We have updated the catalogue of common and well-documented (CWD) human leukocyte antigen (HLA) alleles to reflect current understanding of the prevalence of specific allele sequences. The original CWD catalogue designated 721 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, and -DPB1 loci in IMGT (IMmunoGeneTics)/HLA Database release 2.15.0 as being CWD. The updated CWD catalogue designates 1122 alleles at the HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 loci as being CWD, and represents 14.3% of the HLA alleles in IMGT/HLA Database release 3.9.0. In particular, we identified 415 of these alleles as being 'common' (having known frequencies) and 707 as being 'well-documented' on the basis of ~140,000 sequence-based typing observations and available HLA haplotype data. Using these allele prevalence data, we have also assigned CWD status to specific G and P designations. We identified 147/151 G groups and 290/415 P groups as being CWD. The CWD catalogue will be updated on a regular basis moving forward, and will incorporate changes to the IMGT/HLA Database as well as empirical data from the histocompatibility and immunogenetics community. This version 2.0.0 of the CWD catalogue is available online at cwd.immunogenomics.org, and will be integrated into the Allele Frequencies Net Database, the IMGT/HLA Database and National Marrow Donor Program's bioinformatics web pages. © 2013 John Wiley & Sons A/S.


Holcomb C.L.,Hoffmann-La Roche | Hoglund B.,Hoffmann-La Roche | Anderson M.W.,Stanford University | Blake L.A.,Roche Holding AG | And 22 more authors.
Tissue Antigens | Year: 2011

The high degree of polymorphism at human leukocyte antigen (HLA) class I and class II loci makes high-resolution HLA typing challenging. Current typing methods, including Sanger sequencing, yield ambiguous typing results because of incomplete genomic coverage and inability to set phase for HLA allele determination. The 454 Life Sciences Genome Sequencer (GS FLX) next generation sequencing system coupled with conexio atf software can provide very high-resolution HLA genotyping. High-throughput genotyping can be achieved by use of primers with multiplex identifier (MID) tags to allow pooling of the amplicons generated from different individuals prior to sequencing. We have conducted a double-blind study in which eight laboratory sites performed amplicon sequencing using GS FLX standard chemistry and genotyped the same 20 samples for HLA-A, -B, -C, DPB1, DQA1, DQB1, DRB1, DRB3, DRB4, and DRB5 (DRB3/4/5) in a single sequencing run. The average sequence read length was 250 base pairs and the average number of sequence reads per amplicon was 672, providing confidence in the allele assignments. Of the 1280 genotypes considered, assignment was possible in 95% of the cases. Failure to assign genotypes was the result of researcher procedural error or the presence of a novel allele rather than a failure of sequencing technology. Concordance with known genotypes, in cases where assignment was possible, ranged from 95.3% to 99.4% for the eight sites, with overall concordance of 97.2%. We conclude that clonal pyrosequencing using the GS FLX platform and conexio atf software allows reliable identification of HLA genotypes at high resolution. © 2011 John Wiley & Sons A/S.


Holcomb C.L.,Hoffmann-La Roche | Rastrou M.,Hoffmann-La Roche | Williams T.C.,Childrens Hospital Oakland Research Institute | Goodridge D.,Conexio Genomics | And 4 more authors.
Tissue Antigens | Year: 2014

The high-resolution human leukocyte antigen (HLA) genotyping assay that we developed using 454 sequencing and Conexio software uses generic polymerase chain reaction (PCR) primers for DRB exon 2. Occasionally, we observed low abundance DRB amplicon sequences that resulted from in vitro PCR 'crossing over' between DRB1 and DRB3/4/5. These hybrid sequences, revealed by the clonal sequencing property of the 454 system, were generally observed at a read depth of 5%-10% of the true alleles. They usually contained at least one mismatch with the IMGT/HLA database, and consequently, were easily recognizable and did not cause a problem for HLA genotyping. Sometimes, however, these artifactual sequences matched a rare allele and the automatic genotype assignment was incorrect. These observations raised two issues: (1) could PCR conditions be modified to reduce such artifacts? and (2) could some of the rare alleles listed in the IMGT/HLA database be artifacts rather than true alleles? Because PCR crossing over occurs during late cycles of PCR, we compared DRB genotypes resulting from 28 and (our standard) 35cycles of PCR. For all 21 cell line DNAs amplified for 35cycles, crossover products were detected. In 33% of the cases, these hybrid sequences corresponded to named alleles. With amplification for only 28cycles, these artifactual sequences were not detectable. To investigate whether some rare alleles in the IMGT/HLA database might be due to PCR artifacts, we analyzed four samples obtained from the investigators who submitted the sequences. In three cases, the sequences were generated from true alleles. In one case, our 454 sequencing revealed an error in the previously submitted sequence. © 2013 John Wiley & Sons A/S.


PubMed | Stanford University, Hoffmann-La Roche and Conexio Genomics
Type: Journal Article | Journal: Human immunology | Year: 2015

Compared to Sanger sequencing, next-generation sequencing offers advantages for high resolution HLA genotyping including increased throughput, lower cost, and reduced genotype ambiguity. Here we describe an enhancement of the Roche 454 GS GType HLA genotyping assay to provide very high resolution (VHR) typing, by the addition of 8 primer pairs to the original 14, to genotype 11 HLA loci. These additional amplicons help resolve common and well-documented alleles and exclude commonly found null alleles in genotype ambiguity strings. Simplification of workflow to reduce the initial preparation effort using early pooling of amplicons or the Fluidigm Access Array is also described. Performance of the VHR assay was evaluated on 28 well characterized cell lines using Conexio Assign MPS software which uses genomic, rather than cDNA, reference sequence. Concordance was 98.4%; 1.6% had no genotype assignment. Of concordant calls, 53% were unambiguous. To further assess the assay, 59 clinical samples were genotyped and results compared to unambiguous allele assignments obtained by prior sequence-based typing supplemented with SSO and/or SSP. Concordance was 98.7% with 58.2% as unambiguous calls; 1.3% could not be assigned. Our results show that the amplicon-based VHR assay is robust and can replace current Sanger methodology. Together with software enhancements, it has the potential to provide even higher resolution HLA typing.


Nolan D.,Royal Perth Hospital | Nolan D.,Murdoch University | Castley A.,Royal Perth Hospital | Tschochner M.,Murdoch University | And 13 more authors.
Neurology | Year: 2012

Objective: The identification of a vitamin D-responsive (VDRE) motif within the HLA-DRB1-15:01 promoter region provides an attractive explanation for the combined effects of HLA-DR inheritance and vitamin D exposure on multiple sclerosis (MS) risk. We therefore sought to incorporate HLA-DRB1 promoter variation, including the VDRE motif, in an assessment of HLA-DRB1-associated MS risk. Methods: We utilized 32 homozygous HLA cell lines (covering 17 DRB1 alleles) and 53 heterozygote MS samples (20 DRB1 alleles) for HLA-DRB1 promoter sequencing. The influence of HLADRB1 variation on MS risk was then assessed among 466 MS cases and 498 controls. Results: The majority of HLA-DRB1 alleles (including HLA-DRB1*15:01) express the functional VDRE motif, apart from HLA-DRB1*04, *07, and *09 alleles that comprise the HLA-DR53 serologic group. Allele-specific variation within functional X-box and Y-box motifs was also associated with serologically defined HLA-DR haplotypes. Incorporating these results in an analysis of MS risk, we identified a strong protective effect of HLA-DRB1*04, *07, and *09 (DR53) alleles (p = 10 -12) and elevated risk associated with DRB1*15 and *16 (DR51) and *08 (DR8) alleles (p = 10 -18). Conclusions: HLA-DRB1 groups corresponding to serologic HLA-DR profiles as well as promoter polymorphism haplotypes effectively stratified MS risk over an 11-fold range, suggesting functional relationships between risk-modifying HLA-DRB1 alleles. An independent contribution of VDRE motif variation to increase MS risk was not discernible, although vitamin D-dependent regulation of HLA-DR expression may still play an important role given that HLA-DRB1*04/*07/ *09 (DR53) alleles that express the "nonresponsive" VDRE motif were associated with significantly reduced risk of MS. Copyright © 2012 by AAN Enterprises, Inc.


Land S.,NRL | Zhou J.,University of New South Wales | Cunningham P.,University of New South Wales | Cunningham P.,St Vincents Hospital Sydney Ltd | And 6 more authors.
Journal of the International AIDS Society | Year: 2013

Background: The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods: Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results: Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88-98% in plasma panels and 90-97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors - number of DRMs (p < 0.001) and number of DRMs as mixtures (p < 0.001); and laboratory performance factors - detection of mixtures (p < 0.001) and agreement with consensus sequence (p < 0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion : High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. © 2013 Land S et al; licensee International AIDS Society.

Loading Conexio Genomics collaborators
Loading Conexio Genomics collaborators