Entity

Time filter

Source Type

Te Puke, New Zealand

Ferguson L.R.,University of Auckland | Schlothauer R.C.,Comvita New Zealand Ltd
Molecular Nutrition and Food Research | Year: 2012

Nutritional genomics reflects gene/nutrient interactions, utilising high-throughput genomic tools in nutrition research. The field also considers the contribution of individual genotypes to wellness and the risk of chronic disease (nutrigenetics), and how such genetic predisposition may be modified by appropriate diets. For example, high consumption of brassicaceous vegetables, including broccoli, has regularly associated with low cancer risk. Bioactive chemicals in broccoli include glucosinolates, plant pigments including kaempferol, quercetin, lutein and carotenoids, various vitamins, minerals and amino acids. Cancer prevention is hypothesised to act through various mechanisms including modulation of xenobiotic metabolising enzymes, NF-E2 p45-related factor-2 (Nrf2)-mediated stress-response mechanisms, and protection against genomic instability. Broccoli and broccoli extracts also regulate the progression of cancer through anti-inflammatory effects, effects on signal transduction, epigenetic effects and modulation of the colonic microflora. Human intervention studies with broccoli and related foods, using standard biomarker methodologies, reveal part of a complex picture. Nutrigenomic approaches, especially transcriptomics, enable simultaneous study of various signalling pathways and networks. Phenotypic, genetic and/or metabolic stratification may identify individuals most likely to respond positively to foods or diets. Jointly, these technologies can provide proof of human efficacy, and may be essential to ensure effective market transfer and uptake of broccoli and related foods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source


Liu M.,University of Technology, Sydney | Lu J.,University of Technology, Sydney | Muller P.,University of Technology, Sydney | Turnbull L.,University of Technology, Sydney | And 5 more authors.
Frontiers in Microbiology | Year: 2015

Skin infections caused by antibiotic resistant Staphylococcus aureus are a significant health problem worldwide; often associated with high treatment cost and mortality rate. Complex natural products like New Zealand (NZ) manuka honey have been revisited and studied extensively as an alternative to antibiotics due to their potent broad-spectrum antimicrobial activity, and the inability to isolate honey-resistant S. aureus. Previous studies showing synergistic effects between manuka-type honeys and antibiotics have been demonstrated against the growth of one methicillin-resistant S. aureus (MRSA) strain. We have previously demonstrated strong synergistic activity between NZ manuka-type honey and rifampicin against growth and biofilm formation of multiple S. arueus strains. Here, we have expanded our investigation using multiple S. aureus strains and four different antibiotics commonly used to treat S. aureus-related skin infections: rifampicin, oxacillin, gentamicin, and clindamycin. Using checkerboard microdilution and agar diffusion assays with S. aureus strains including clinical isolates and MRSA we demonstrate that manuka-type honey combined with these four antibiotics frequently produces a synergistic effect. In some cases when synergism was not observed, there was a significant enhancement in antibiotic susceptibility. Some strains that were highly resistant to an antibiotic when present alone become sensitive to clinically achievable concentrations when combined with honey. However, not all of the S. aureus strains tested responded in the same way to these combinational treatments. Our findings support the use of NZ manuka-type honeys in clinical treatment against S. aureus-related infections and extend their potential use as an antibiotic adjuvant in combinational therapy. Our data also suggest that manuka-type honeys may not work as antibiotic adjuvants for all strains of S. aureus, and this may help determine the mechanistic processes behind honey synergy. © 2015 Liu, Lu, Müller, Turnbull, Burke, Schlothauer, Carter, Whitchurch and Harry. Source


Tomblin V.,University of Auckland | Ferguson L.R.,University of Auckland | Han D.Y.,University of Auckland | Murray P.,University of Auckland | Schlothauer R.,Comvita New Zealand Ltd
International Journal of General Medicine | Year: 2014

The role of honey in wound healing continues to attract worldwide attention. This study examines the anti-inflammatory effect of four honeys on wound healing, to gauge its efficacy as a treatment option. Isolated phenolics and crude extracts from manuka (Leptosper-mum scoparium), kanuka (Kunzea ericoides), clover (Trifolium spp.), and a manuka/kanuka blend of honeys were examined. Anti-inflammatory assays were conducted in HEK-Blue™-2, HEK-Blue™-4, and nucleotide oligomerization domain (NOD)2-Wild Type (NOD2-WT) cell lines, to assess the extent to which honey treatment impacts on the inflammatory response and whether the effect was pathway-specific. Kanuka honey, and to a lesser extent manuka honey, produced a powerful anti-inflammatory effect related to their phenolic content. The effect was observed in HEK-Blue™-2 cells using the synthetic tripalmitoylated lipopeptide Pam3Cys-SerLys4 (Pam3CSK4) ligand, suggesting that honey acts specifically through the toll-like receptor (TLR)1/TLR2 signaling pathway. The manuka/kanuka blend and clover honeys had no significant anti-inflammatory effect in any cell line. The research found that kanuka and manuka honeys have an important role in modulating the inflammatory response associated with wound healing, through a pathway-specific effect. The phenolic content of honey correlates with its effectiveness, although the specific compounds involved remain to be determined. © 2014 Tomblin et al. Source


Patent
COMVITA NEW ZEALAND Ltd | Date: 2011-08-29

Compositions are described with an unexpectedly greater yeast growth inhibitory effect than the individual components alone. The compositions include a mixture of honey, a honey analogue or a honey fraction along with lactoferrin protein. The combination has a synergistic effect in inhibiting yeast growth.


Methods and apparatus are described for the measurement of honey plant origin characteristics via fluorescence.

Discover hidden collaborations