Stockholm, Sweden
Stockholm, Sweden

Time filter

Source Type

Systems and methods generate a modified application data structure that provides a customized modeling of physical systems in response to customized user inputs received via application feature(s) for new window form(s). The modified application data structure is generated from guided user inputs received through application builder wizard graphical user interface(s). The systems and methods include embedding a multiphysics model data structure in an initial application data structure and defining new window form(s). Window form data representing the defined new window forms is added to the initial application data structure. User-selectable application feature options are displayed in the application builder wizard graphical user interface(s) and application feature data is added to the initial application data structure to create a modified application data structure. The added application features can include data representing widget(s), form feature(s), and command sequence(s).


Systems and methods generate a modified application data structure that provides a customized modeling of physical systems in response to customized user inputs received via application feature(s) for new window form(s). The modified application data structure is generated from guided user inputs received through application builder wizard graphical user interface(s). The systems and methods include embedding a multiphysics model data structure in an initial application data structure and defining new window form(s). Window form data representing the defined new window forms is added to the initial application data structure. User-selectable application feature options are displayed in the application builder wizard graphical user interface(s) and application feature data is added to the initial application data structure to create a modified application data structure. The added application features can include data representing widget(s), form feature(s), and command sequence(s).


Disclosed are techniques for representing and modeling systems in which each system corresponds to an application mode. This may be done for one or more geometries using local and/or non-local couplings. For each application mode, physical quantities are modeled and may be defined using a graphical user interface. Physical properties may be used to model the physical quantities of each system. The physical properties may be defined in terms of numerical values or constants, and mathematical expressions that may include numerical values, space coordinates, time coordinates, and actual physical quantities. Physical quantities and any associated variables may apply to some or all of a geometric domain, and may also be disabled in other parts of a geometrical domain. Partial differential equations describe the physical quantities. One or more application modes may be combined using an automated technique into a combined system of partial differential equations as a multiphysics model.


A system and method for implementing, on one or more processors, a bidirectional link between a design system and a multiphysics modeling system includes establishing via a communications link a connection between the design system and the multiphysics modeling system. Instructions are communicated via the communication link that include commands for generating a geometric representation in the design system based on parameters communicated from the multiphysics modeling system. One or more memory components can be configured to store a design system dynamic link library and a multiphysics modeling system dynamic link library. A controller can be operative to detect an installation of the design system, and implement via the dynamic link libraries, bidirectional communications of instructions between the design system and the multiphysics modeling system.


An apparatus for generating an application data structure includes a physical computing system comprising processor(s), input device(s), display(s), and memor(ies). The memory includes executable instructions that cause a processor to perform the acts of embedding a multiphysics model data structure for a physical system in an application data structure. Application features are determined to add to the application data structure. First data is added representing a form feature for the application features for the model of the physical system. Second data is added representing at an action feature for the application features. The second data is associated with at least one modeling operation to define a sequence of operations for modeling the physical system. The application data structure is updated including the added first and second data and the associating defining the sequence of operations. The updated application data structure is stored on the memory device(s).


A simulation apparatus for adding extra geometries to a model of a physical system. The apparatus is configured to modify a geometry of a model of a physical system represented in terms of a combined set of equations. Instructions on the apparatus cause one or more processors to perform, upon execution, acts comprising: (i) receiving a base geometry of the physical system, (ii) receiving one or more extra geometries associated with the base geometry, (iii) determining first geometric entities of the base geometry and second geometric entities of the extra geometry, (iv) adding the extra geometries to the base geometry by computing a product geometry of the determined first geometric entities and the second geometric entities, (v) generating an updated combined set of equations including representations of the product geometry, and (vi) generating a graphical representation of the product geometry, the graphical representation configured for display on the display device.


An apparatus for generating an application data structure includes a physical computing system comprising processor(s), input device(s), display(s), and memor(ies). The memory includes executable instructions that cause a processor to perform the acts of embedding a multiphysics model data structure for a physical system in an application data structure. Application features are determined to add to the application data structure. First data is added representing a form feature for the application features for the model of the physical system. Second data is added representing at an action feature for the application features. The second data is associated with at least one modeling operation to define a sequence of operations for modeling the physical system. The application data structure is updated including the added first and second data and the associating defining the sequence of operations. The updated application data structure is stored on the memory device(s).


A system generates a customized application data structure for modeling physical systems. The system includes a processor, an input device, optionally a display device, and a memory device. The processor is adapted to embed a multiphysics model data structure in the application data structure. The multiphysics model data structure comprises a representation of models of physical systems. Geometry data representing geometry subroutines and call data representing geometry subroutine calls are added to the embedded multiphysics model data structure. Data representing application features are added to the application data structure. Each application feature comprises one or more of (i) first data representing a form feature, or (ii) second data representing an action feature. A customized application data structure is generated providing a customized modeling of the physical systems using a modeling operation, a geometry of the one or more models of physical systems, an application feature, and a geometry subroutine.


Disclosed are techniques for representing and modeling one or more systems in which each system corresponds to an application mode. This may be done for one or more geometries using local and/or non-local couplings. For each application mode, physical quantities are modeled and may be defined using a graphical user interface. Physical properties may be used to model the physical quantities of each system. The physical properties may be defined in terms of numerical values or constants, and mathematical expressions that may include numerical values, space coordinates, time coordinates, and actual physical quantities. Physical quantities and any associated variables may apply to some or all of a geometric domain, and may also be disabled in other parts of a geometrical domain. Partial differential equations describe the physical quantities. One or more application modes may be combined using an automated technique into a combined system of partial differential equations as a multiphysics model. A portion of the physical quantities and variables associated with the combined system may be selectively solved for. Also described are methods for computing the stiffness matrix, residual vector, constraint matrix, and constraint residual vector for the finite element discretization of a system of partial differential equations in weak form that includes local and non-local variables coupling multiple geometries.


Systems and methods for generating a model tree structure for a multiphysics modeling system include the acts of transmitting a plurality of selectable physics options for association with at least one of combined systems. An input associated with a selection of at least one of the plurality of selectable physics options is received. One or more selectable study options are transmitted for association with the combined systems. An input associated with a selection of at least one of the one or more selectable study options is received. In response to receiving the input associated with the selection at least one of the one or more selectable study options, a model tree structure is generated using the one or more processing units. The model tree structure includes a plurality of selectable nodes including one or more parent nodes and one or more child nodes. The selectable nodes include fields storing physical quantities and operations for modeling the combined systems.

Loading Comsol AB collaborators
Loading Comsol AB collaborators