Computer Engineering

Pune, India

Computer Engineering

Pune, India

Time filter

Source Type

News Article | May 22, 2017
Site: www.chromatographytechniques.com

Rutgers University-New Brunswick scientists have created a graphene-based sensor that could lead to earlier detection of looming asthma attacks and improve the management of asthma and other respiratory diseases, preventing hospitalizations and deaths. The sensor paves the way for the development of devices – possibly resembling fitness trackers like the Fitbit – which people could wear and then know when and at what dosage to take their medication.   “Our vision is to develop a device that someone with asthma or another respiratory disease can wear around their neck or on their wrist and blow into it periodically to predict the onset of an asthma attack or other problems,” said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering. “It advances the field of personalized and precision medicine.” Javanmard and a diverse team of Rutgers-New Brunswick experts describe their invention in a study published online today in the journal Microsystems & Nanoengineering. Asthma, which causes inflammation of the airway and obstructs air flow, affects about 300 million people worldwide. About 17.7 million adults and 6.3 million children in the United States were diagnosed with asthma in 2014. Symptoms include coughing, wheezing, shortness of breath, and chest tightness. Other serious lung ailments include chronic obstructive pulmonary disease (COPD), which encompasses emphysema and chronic bronchitis. Today’s non-invasive methods for diagnosing and monitoring asthma are limited in characterizing the nature and degree of airway inflammation, and require costly, bulky equipment that patients cannot easily keep with them. The methods include spirometry, which measures breathing capacity, and testing for exhaled nitric oxide, an indicator of airway inflammation. There’s an urgent need for improved, minimally invasive methods for the molecular diagnosis and monitoring of asthma, the study says. Measuring biomarkers in exhaled breath condensate – tiny liquid droplets discharged during breathing – can contribute to understanding asthma at the molecular level and lead to targeted treatment and better disease management. The Rutgers researchers’ miniaturized electrochemical sensor accurately measures nitrite in exhaled breath condensate using reduced graphene oxide. Reduced graphene oxide resists corrosion, has superior electrical properties and is very accurate in detecting biomarkers. Graphene is a thin layer of the graphite used in pencils. “Nitrite level in breath condensate is a promising biomarker for inflammation in the respiratory tract. Having a rapid, easy method to measure it can help an asthmatic determine if air pollutants are affecting them so they can better manage use of medication and physical activity,” said Clifford Weisel, study co-author and professor at Rutgers’ Environmental and Occupational Health Sciences Institute (EOHSI). “It could also be used in a physician’s office and emergency departments to monitor the effectiveness of various anti-inflammatory drugs to optimize treatment.” “Increases in airway inflammation may be an early warning sign of increased risk of an asthma attack or exacerbation of COPD, allowing for earlier and more-effective preventive measures or treatment,” said Robert Laumbach, study co-author and an occupational and environmental medicine physician at EOHSI. “Just looking at coughing, wheezing and other outward symptoms, diagnosis accuracy is often poor, so that’s why this idea of monitoring biomarkers continuously can result in a paradigm shift,” said Javanmard, who works in the School of Engineering. “The ability to perform label-free quantification of nitrite content in exhaled breath condensate in a single step without any sample pre-treatment resolves a key bottleneck to enabling portable asthma management.” The next step is to develop a portable, wearable system, which could be commercially available within five years, he said. The researchers also envision expanding the number of inflammation biomarkers a device could detect and measure. “In the U.S. alone, allergy inflammation, asthma and various respiratory conditions are all on the rise, so devices that can help diagnose, monitor and manage these conditions will be in high demand,” Javanmard said.


The sensor paves the way for the development of devices - possibly resembling fitness trackers like the Fitbit - which people could wear and then know when and at what dosage to take their medication. "Our vision is to develop a device that someone with asthma or another respiratory disease can wear around their neck or on their wrist and blow into it periodically to predict the onset of an asthma attack or other problems," said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering. "It advances the field of personalized and precision medicine." Javanmard and a diverse team of Rutgers-New Brunswick experts describe their invention in a study published online today in the journal Microsystems & Nanoengineering. Asthma, which causes inflammation of the airway and obstructs air flow, affects about 300 million people worldwide. About 17.7 million adults and 6.3 million children in the United States were diagnosed with asthma in 2014. Symptoms include coughing, wheezing, shortness of breath, and chest tightness. Other serious lung ailments include chronic obstructive pulmonary disease (COPD), which encompasses emphysema and chronic bronchitis. Today's non-invasive methods for diagnosing and monitoring asthma are limited in characterizing the nature and degree of airway inflammation, and require costly, bulky equipment that patients cannot easily keep with them. The methods include spirometry, which measures breathing capacity, and testing for exhaled nitric oxide, an indicator of airway inflammation. There's an urgent need for improved, minimally invasive methods for the molecular diagnosis and monitoring of asthma, the study says. Measuring biomarkers in exhaled breath condensate - tiny liquid droplets discharged during breathing - can contribute to understanding asthma at the molecular level and lead to targeted treatment and better disease management. The Rutgers researchers' miniaturized electrochemical sensor accurately measures nitrite in exhaled breath condensate using reduced graphene oxide. Reduced graphene oxide resists corrosion, has superior electrical properties and is very accurate in detecting biomarkers. Graphene is a thin layer of the graphite used in pencils. "Nitrite level in breath condensate is a promising biomarker for inflammation in the respiratory tract. Having a rapid, easy method to measure it can help an asthmatic determine if air pollutants are affecting them so they can better manage use of medication and physical activity," said Clifford Weisel, study co-author and professor at Rutgers' Environmental and Occupational Health Sciences Institute (EOHSI). "It could also be used in a physician's office and emergency departments to monitor the effectiveness of various anti-inflammatory drugs to optimize treatment." "Increases in airway inflammation may be an early warning sign of increased risk of an asthma attack or exacerbation of COPD, allowing for earlier and more-effective preventive measures or treatment," said Robert Laumbach, study co-author and an occupational and environmental medicine physician at EOHSI. "Just looking at coughing, wheezing and other outward symptoms, diagnosis accuracy is often poor, so that's why this idea of monitoring biomarkers continuously can result in a paradigm shift," said Javanmard, who works in the School of Engineering. "The ability to perform label-free quantification of nitrite content in exhaled breath condensate in a single step without any sample pre-treatment resolves a key bottleneck to enabling portable asthma management." The next step is to develop a portable, wearable system, which could be commercially available within five years, he said. The researchers also envision expanding the number of inflammation biomarkers a device could detect and measure. "In the U.S. alone, allergy inflammation, asthma and various respiratory conditions are all on the rise, so devices that can help diagnose, monitor and manage these conditions will be in high demand," Javanmard said.


Imec announced today its success in fabricating a prototype implantable chip that aims to give patients more intuitive control over their arm prosthetics. The thin-silicon chip is a world's first for electrode density and was developed in collaboration with researchers at the University of Florida, as part of the IMPRESS project funded by the DARPA's HAPTIX program to create a closed-loop system for future-generation haptic prosthetics technology. Today, arm prosthetics technologies have been shown to give patients the ability to move their artificial arm and hand to grasp and manipulate objects. This is done by reading out signals from the person's muscles or peripheral nerves to control electromotors in the prosthesis thereby conveying intent. Although very helpful, these prosthetics still don't allow a fine motor control and don't give patients a feeling of touch. Future advanced prosthetics under development will provide amputees with rich sensory content from these artificial limbs by delivering precise electrical patterns to the person's peripheral nerves using implanted electrode interfaces. According to Rizwan Bashirullah, associate professor of Electrical and Computer Engineering, and director of the University of Florida's IMPRESS program (Implantable Multimodal Peripheral Recording and Stimulation System), "this effort aims to create such new peripheral nerve interfaces with greater channel count, electrode density, and information stability, enabled largely by imec's technological innovation." As part of IMPRESS, imec has now made a prototype ultrathin (35µm) chip with a biocompatible, hermetic and flexible packaging. On its surface are 64 electrodes, with a possible extension to 128. This exceptionally high amount of electrodes allows fine-grained stimulation and recording. Through a needle attached to the chip, the package can be inserted and attached inside a nerve bundle, further increasing the precision of reading and stimulation compared to current technology which has substantially fewer electrodes and is wrapped around the nerve bundle. In practice, imec's solution will aim to give patients more control over their prosthetic arm and hand, and also the possibility of a finer haptic feedback. "Our expertise in silicon neuro-interfaces made imec a natural fit for this project, where we have reached an important milestone for future-generation haptic prosthetics," commented Dries Braeken, R&D manager and project manager of IMPRESS at imec. "These interfaces allow a much higher density of electrodes and greater flexibility in recording and stimulating than any other technology. With the completion of this prototype and the first phase of the project, we look forward to the next phase where we will make the prototype ready for long-term implanted testing." "A new biocompatible chip encapsulation technology is used, based on the stacking of nanolayers with superior diffusion barrier properties, alternating with very thin polymer layers with excellent mechanical behavior," explains Maaike Op de Beeck, program manager at imec. "The final result is an ultrathin flexible electronic device with a thickness comparable to that of a human hair, hence ultimately suitable for minimal invasive implantation." Explore further: New nerve and muscle interfaces aid wounded warrior amputees


News Article | May 22, 2017
Site: www.eurekalert.org

By analyzing network traffic going to suspicious domains, security administrators could detect malware infections weeks or even months before they're able to capture a sample of the invading malware, a new study suggests. The findings point toward the need for new malware-independent detection strategies that will give network defenders the ability to identify network security breaches in a more timely manner. The strategy would take advantage of the fact that malware invaders need to communicate with their command and control computers, creating network traffic that can be detected and analyzed. Having an earlier warning of developing malware infections could enable quicker responses and potentially reduce the impact of attacks, the study's researchers say. "Our study shows that by the time you find the malware, it's already too late because the network communications and domain names used by the malware were active weeks or even months before the actual malware was discovered," said Manos Antonakakis, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. "These findings show that we need to fundamentally change the way we think about network defense." Traditional defenses depend on the detection of malware in a network. While analyzing malware samples can identify suspicious domains and help attribute network attacks to their sources, relying on samples to drive defensive actions gives malicious actors a critical time advantage to gather information and cause damage. "What we need to do is minimize the amount of time between the compromise and the detection event," Antonakakis added. The research, which will be presented May 24 at the 38th IEEE Security and Privacy Symposium in San Jose, California, was supported by the U.S. Department of Commerce, the National Science Foundation, the Air Force Research Laboratory and the Defense Advanced Research Projects Agency. The project was done in collaboration with EURECOM in France and the IMDEA Software Institute in Spain - whose work was supported by the regional government of Madrid and the government of Spain. In the study, Antonakakis, Graduate Research Assistant Chaz Lever and colleagues analyzed more than five billion network events from nearly five years of network traffic carried by a major U.S. internet service provider (ISP). They also studied domain name server (DNS) requests made by nearly 27 million malware samples, and examined the timing for the re-registration of expired domains - which often provide the launch sites for malware attacks. "There were certain networks that were more prone to abuse, so looking for traffic into those hot spot networks was potentially a good indicator of abuse underway," said Lever, the first author of the paper and a student in Georgia Tech's School of Electrical and Computer Engineering. "If you see a lot of DNS requests pointing to hot spots of abuse, that should raise concerns about potential infections." The researchers also found that requests for dynamic DNS also related to bad activity, as these often correlate with services used by bad actors because they provide free domain registrations and the ability to add quickly add domains. The researchers had hoped that the registration of previously expired domain names might provide a warning of impending attacks. But Lever found there was often a lag of months between when expired domains were re-registered and attacks from them began. The research required development of a filtering system to separate benign network traffic from malicious traffic in the ISP data. The researchers also conducted what they believe is the largest malware classification effort to date to differentiate the malicious software from potentially unwanted programs (PUPs). To study similarities, they assigned the malware to specific "families." By studying malware-related network traffic seen by the ISPs prior to detection of the malware, the researchers were able to determine that malware signals were present weeks and even months before new malicious software was found. Relating that to human health, Antonakakis compares the network signals to the fever or general feeling of malaise that often precedes identification of the microorganism responsible for an infection. "You know you are sick when you have a fever, before you know exactly what's causing it," he said. "The first thing the adversary does is set up a presence on the internet, and that first signal can indicate an infection. We should try to observe that symptom first on the network because if we wait to see the malware sample, we are almost certainly allowing a major infection to develop." In all, the researchers found more than 300,000 malware domains that were active for at least two weeks before the corresponding malware samples were identified and analyzed. But as with human health, detecting a change indicating infection requires knowledge of the baseline activity, he said. Network administrators must have information about normal network traffic so they can detect the abnormalities that may signal a developing attack. While many aspects of an attack can be hidden, malware must always communicate back to those who sent it. "If you have the ability to detect traffic in a network, regardless of how the malware may have gotten in, the action of communicating through the network will be observable," Antonakais said. "Network administrators should minimize the unknowns in their networks and classify their appropriate communications as much as possible so they can see the bad activity when it happens." Antonakakis and Lever hope their study will lead to development of new strategies for defending computer networks. "The choke point is the network traffic, and that's where this battle should be fought," said Antonakakis. "This study provides a fundamental observation of how the next generation of defense mechanisms should be designed. As more complicated attacks come into being, we will have to become smarter at detecting them earlier." In addition to those already mentioned, the study included Davide Balzarotti from EURECOM, and Platon Kotzias and Juan Cabellero from IMDEA Software Institute. This material is based upon work supported in part by the U.S. Department of Commerce grant 2106DEK, National Science Foundation (NSF) grant 2106DGX and Air Force Research Laboratory/Defense Advanced Research Projects Agency grant 2106DTX. This research was also partially supported by the Regional Government of Madrid through the N-GREENS Software-CM S2013/ICE-2731 project and by the Spanish Government through the DEDETIS grant TIN2015-7013-R. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Department of Commerce, National Science Foundation, Air Force Research Laboratory, or Defense Advanced Research Projects Agency. CITATION: Chaz Lever, et al., "A Lustrum of Malware Network Communication: Evolution and Insights," (38th IEEE Security and Privacy Symposium, 2017).


News Article | May 22, 2017
Site: phys.org

The strategy would take advantage of the fact that malware invaders need to communicate with their command and control computers, creating network traffic that can be detected and analyzed. Having an earlier warning of developing malware infections could enable quicker responses and potentially reduce the impact of attacks, the study's researchers say. "Our study shows that by the time you find the malware, it's already too late because the network communications and domain names used by the malware were active weeks or even months before the actual malware was discovered," said Manos Antonakakis, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. "These findings show that we need to fundamentally change the way we think about network defense." Traditional defenses depend on the detection of malware in a network. While analyzing malware samples can identify suspicious domains and help attribute network attacks to their sources, relying on samples to drive defensive actions gives malicious actors a critical time advantage to gather information and cause damage. "What we need to do is minimize the amount of time between the compromise and the detection event," Antonakakis added. The research, which will be presented May 24 at the 38th IEEE Security and Privacy Symposium in San Jose, California, was supported by the U.S. Department of Commerce, the National Science Foundation, the Air Force Research Laboratory and the Defense Advanced Research Projects Agency. The project was done in collaboration with EURECOM in France and the IMDEA Software Institute in Spain - whose work was supported by the regional government of Madrid and the government of Spain. In the study, Antonakakis, Graduate Research Assistant Chaz Lever and colleagues analyzed more than five billion network events from nearly five years of network traffic carried by a major U.S. internet service provider (ISP). They also studied domain name server (DNS) requests made by nearly 27 million malware samples, and examined the timing for the re-registration of expired domains - which often provide the launch sites for malware attacks. "There were certain networks that were more prone to abuse, so looking for traffic into those hot spot networks was potentially a good indicator of abuse underway," said Lever, the first author of the paper and a student in Georgia Tech's School of Electrical and Computer Engineering. "If you see a lot of DNS requests pointing to hot spots of abuse, that should raise concerns about potential infections." The researchers also found that requests for dynamic DNS also related to bad activity, as these often correlate with services used by bad actors because they provide free domain registrations and the ability to add quickly add domains. The researchers had hoped that the registration of previously expired domain names might provide a warning of impending attacks. But Lever found there was often a lag of months between when expired domains were re-registered and attacks from them began. The research required development of a filtering system to separate benign network traffic from malicious traffic in the ISP data. The researchers also conducted what they believe is the largest malware classification effort to date to differentiate the malicious software from potentially unwanted programs (PUPs). To study similarities, they assigned the malware to specific "families." By studying malware-related network traffic seen by the ISPs prior to detection of the malware, the researchers were able to determine that malware signals were present weeks and even months before new malicious software was found. Relating that to human health, Antonakakis compares the network signals to the fever or general feeling of malaise that often precedes identification of the microorganism responsible for an infection. "You know you are sick when you have a fever, before you know exactly what's causing it," he said. "The first thing the adversary does is set up a presence on the internet, and that first signal can indicate an infection. We should try to observe that symptom first on the network because if we wait to see the malware sample, we are almost certainly allowing a major infection to develop." In all, the researchers found more than 300,000 malware domains that were active for at least two weeks before the corresponding malware samples were identified and analyzed. But as with human health, detecting a change indicating infection requires knowledge of the baseline activity, he said. Network administrators must have information about normal network traffic so they can detect the abnormalities that may signal a developing attack. While many aspects of an attack can be hidden, malware must always communicate back to those who sent it. "If you have the ability to detect traffic in a network, regardless of how the malware may have gotten in, the action of communicating through the network will be observable," Antonakais said. "Network administrators should minimize the unknowns in their networks and classify their appropriate communications as much as possible so they can see the bad activity when it happens." Antonakakis and Lever hope their study will lead to development of new strategies for defending computer networks. "The choke point is the network traffic, and that's where this battle should be fought," said Antonakakis. "This study provides a fundamental observation of how the next generation of defense mechanisms should be designed. As more complicated attacks come into being, we will have to become smarter at detecting them earlier." Explore further: Here's how the ransomware attack was stopped – and why it could soon start again More information: Chaz Lever, et al., "A Lustrum of Malware Network Communication: Evolution and Insights," 38th IEEE Security and Privacy Symposium, 2017.


News Article | May 17, 2017
Site: www.prweb.com

ProviDyn®, a provider of IT support, strategy and services for small and medium-sized businesses and nonprofits, has hired seasoned IT professional Walter Nirenberg to the position of Senior Director, Operations. In that capacity, Nirenberg will be enhancing the client experience by providing superior leadership to a growing technical services team, expanding project management resources and assisting in the development of new services. “I am excited to be part of a team that is fanatical about delivering the best service around,” said Nirenberg. “ProviDyn is a dynamic, growing organization and I look forward to helping it continue its upward trajectory.” An accomplished IT pro with 20+ years of experience in a diverse range of technologies, Nirenberg’s expertise includes strategic planning, business process improvement, operations management, data center design and operations, networking, VoIP, virtualization and platform management. Prior to joining ProviDyn, Nirenberg was a Senior Director—IT Operations for SARALUX LLC, where he spearheaded Infrastructure Technical Program Management to support key and critical initiatives. He has also held technology leadership positions with AT&T (Bellsouth) and several prominent technology-focused companies. Nirenberg earned a Bachelor of Science degree in Computer Engineering from the Georgia Institute of Technology and holds a broad array of certifications including Microsoft Certified Systems Engineer (MCSE) and Cisco Certified Network Associate (CCNA). He is currently working to become a Certified Information Systems Security Professional (CISSP). “Walter’s proven track record of improving processes, maximizing efficiency and fostering IT excellence will be a real asset to ProviDyn,” said ProviDyn CEO Hamish Davidson. “We are excited to have Walter on our team helping to ensure each client’s experience with ProviDyn is truly exceptional.” About ProviDyn ProviDyn provides technology expertise, services and support to help small and mid-sized organizations sustain growth and strengthen performance. Backed by technology experts, ProviDyn helps organizations gain the full benefits of existing technology, make strategic investments in implementing new technology and maintain an infrastructure that is secure, reliable and flexible. ProviDyn offers managed services, mobile computing, IT strategy, virtualization, cloud computing, business continuity, network security and IP telephony. To learn more about how ProviDyn is driving business through technology and helping companies reduce costs, improve efficiency and maximize productivity, visit http://www.providyn.com.


SEATTLE--(BUSINESS WIRE)--Jose Antonio Vargas, founder of the non-profit organization Define American and the media start-up #EmergingUS, is bringing his insights about race, immigration, identity and citizenship to the new digital media network TheMaven (symbol MVEN). “Jose is a bold and compelling journalist, filmmaker and advocate for the underdog,” said James Heckman, CEO of TheMaven. “This is the meeting of his brilliant mind and unique point of view, with our state-of-the-art platform.” Vargas is a Pulitzer Prize-winning journalist, Emmy-nominated filmmaker, and media entrepreneur whose work centers on the changing American identity and elevating the conversation around immigration and citizenship. His channel on TheMaven, launching this spring, will have a similar focus. “I am thrilled to be a partner in what promises to be a pioneering media company,” Vargas says of TheMaven. “James and his team have an unimpeachable track record in building digital properties. In a crowded media ecosystem, I am confident that TheMaven will make its mark and I’m honored to be a part of it.” A former Washington Post reporter and Huffington Post editor, Vargas is the CEO of Define American, which he launched in 2011 with the aim of using powerful, real-life storytelling to advocate for immigrants and their families and promote an environment in which they are seen as human beings. In 2011, the New York Times Magazine published a groundbreaking essay Vargas wrote in which he revealed and chronicled his life in America as an undocumented immigrant. A year later, Vargas appeared on the cover of Time Magazine alongside other undocumented immigrants, with the headline “Not Legal, Not Leaving.” In one of the rare instances in the history of Time, Vargas wrote the cover story himself. In addition to his advocacy work, Vargas is also a media entrepreneur, producing original video content through #EmergingUS. He has produced three documentaries, including the autobiographical “Documented,” which received a 2015 NAACP Image Award nomination for Outstanding Documentary, and “White People,” an MTV special that was nominated for an Emmy Award. “As ad and social platforms evolve, TheMaven provides independent leaders, like Jose, an end-to-end business home, to continue to distribute on platforms like Facebook and Twitter but as part of a fully-integrated, unified strategy, which includes advertising, technology and distribution,” added Heckman. “Our business model has always been to hand-pick and invest in the elite, independent content leaders in a particular category and Jose certainly is the leader in his space -- and the timing couldn’t be more appropriate. We’re proud to include his passion and brilliance with the rest of our inspiring leaders.” TheMaven is an expert-driven, group media network whose state-of-the-art platform serves, by invitation-only, professional, independent channel partners to provide broader distribution, greater community engagement, and efficient advertising and membership programs. TheMaven enables channel partners to focus on the key ingredients to their business: creating, informing, sharing, discovering, leading and interacting with the communities and constituencies they serve. TheMaven Network will launch this quarter in beta as channel partner signings continue to be announced. For more information, visit themaven.net. Based in Seattle, TheMaven is publicly traded in the OTC Markets Group, under the ticker symbol MVEN. Key members of the leadership team include: Founder and CEO, James Heckman, has extensive experience in digital media, advertising, video and online communities for major public companies and several times as founder. He served as Head of Global Media Strategy for Yahoo!, leading all significant transactions and revenue strategy under Ross Levinsohn’s tenure. As Chief Strategy Officer at Fox Digital, he architected the market-changing, $900 million social media ad alliance between Google and Myspace and was instrumental in Hulu’s formation. Prior to Yahoo!, Mr. Heckman was founder/CEO of 5to1.com (sold to Yahoo!), CSO of Zazzle.com, Founder/CEO of Scout.com (sold to Fox), Founder/CEO of Rivals.com and Rivals.net (sold to Yahoo!, post tenure and 365-Sports, respectively) and held the position of President and Publisher of NFL Exclusive, official publication for every NFL team. Heckman holds a BA in Communications from the University of Washington. Co-founder and COO, William Sornsin, ran MSN's Core Technology team before joining Rivals as co-founder and CTO in 1999, co-founded Scout.com as CTO/COO; was VP Engineering & Operations at Fox Interactive Media after Scout acquisition. Earlier, Sornsin held a variety of product and program management roles at Microsoft. He holds a BS Electrical/Computer Engineering from the University of Iowa and an MBA from UCLA. Co-founder and CTO, Benjamin Joldersma’s career spans nearly two decades of large-scale platform development, including CTO and chief architect of Scout.com. Ben held the role of Senior software engineer, Geo/Imagery at Google, a Principal Software Engineer at Yahoo!, Chief Architect at 5to1 and held senior engineering roles at aQuantive, Rivals.com and Microsoft. Ben studied Computer Science at University of Puget Sound. Director, Ross Levinsohn is a leading industry figure who has long focused on the convergence of technology and media. He served as CEO at Yahoo in 2012 and prior to that role was Executive Vice President, Americas and Head of Global Media from 2010 to 2012. Levinsohn served as President of Fox Interactive where he helped create one of the largest digital businesses amongst the traditional media companies, and was instrumental in the formation of what is now Hulu. He serves on several public and private media and technology boards, including Tribune Media, mobile advertising marketplace YieldMo, Vubiquity, Zefr, and the National Association of Television Program Executives. He was Executive Chairman and Director of Scout Media, Inc. from 2014-2016, previously served as the Chief Executive Officer of Guggenheim Digital Media and co-founded 5to1 Holding Corp, serving as its Executive Chairman. He co-founded Fuse Capital in 2005 and served as its Managing Director and Managing Partner. He served as General Manager at AltaVista Network and Vice President of Programming and Executive Producer at CBS Sportsline. Mr. Levinsohn received a BA in Broadcast Communications from American University, and is a trustee there.


SEATTLE--(BUSINESS WIRE)--Neale Godfrey, a New York Times No. 1 best-selling author and award-winning financial expert best known as “the financial voice for Baby Boomers, Millennials and their offspring,” will soon launch a channel on TheMaven Network, specifically aimed at empowering families to take charge of their financial lives. "TheMaven is offering a cutting-edge platform for top-of-their-field experts and so I’m thrilled to join them as a founding partner in this network. I plan to soon launch what will be the trusted, go-to place for real family financial advice. My plan is to be with people every step of the way, as they deal with money issues in their lives,” said Godfrey, who has written 27 books and is considered one of the first senior female banking executives in the nation. Godfrey is the second finance expert to be announced by TheMaven (symbol MVEN) this month, following Brad Thomas, a top REIT investment analyst. “Neale Godfrey represents exactly what TheMaven stands for,” said James Heckman, CEO and founder of TheMaven Network. “Neale is not only a brilliant communicator of original content, she’s an expert and active participant in her field whose credentials as an advocate for American families are unmatched. In a world of click-bait and commodity news, TheMaven is solely focused on partnering with authentic, passionate, elite experts -- and Neale is all of those things.” Godfrey is a familiar face on television. She appeared on Oprah more than a dozen times and has been a guest on the Today Show, Good Morning America, Fox, CNN, CNBC, NBC, ABC and more. She is a regular contributor to Forbes.com and the Huffington Post and an executive-in-residence at Columbia Graduate School of Business. She previously wrote a syndicated column for The Associated Press and participated in the White House Health Care Task Force. “Who can you talk to about designing a healthy approach to money, manage your kids’ ‘wants’, discuss money problems with your partner -- or your ex!?” asks Godfrey. “Need to fix your credit, provide for aging parents, your own death? I’ll be there no further away than your mobile device as a personal coach, so you can to fulfill your dreams.” Added Heckman, “The big difference Neale will offer, as will all partners in TheMaven, is professional interaction and community -- in a structured, organized way. Neale’s personality and brilliance we believe will thrive within this tactic.” TheMaven is an expert-driven, group media network whose state-of-the-art platform serves, by invitation-only, professional, independent channel partners. By providing broader distribution, greater community engagement, and efficient advertising and membership programs, TheMaven enables partners to focus on the key ingredients to their business: creating, informing, sharing, discovering, leading and interacting with the communities and constituencies they serve. TheMaven Network will launch this quarter in beta as channel partner signings continue to be announced. For more information, visit themaven.net. Based in Seattle, TheMaven is publicly traded in the OTC Markets Group, under the ticker symbol MVEN. Key members of the leadership team include: Founder and CEO, James Heckman, has extensive experience in digital media, advertising, video and online communities for major public companies and several times as founder. He served as Head of Global Media Strategy for Yahoo!, leading all significant transactions and revenue strategy under Ross Levinsohn’s tenure. As Chief Strategy Officer at Fox Digital, he architected the market-changing, $900 million social media ad alliance between Google and Myspace and was instrumental in Hulu’s formation. Prior to Yahoo!, Mr. Heckman was founder/CEO of 5to1.com (sold to Yahoo!), CSO of Zazzle.com, Founder/CEO of Scout.com (sold to Fox), Founder/CEO of Rivals.com and Rivals.net (sold to Yahoo!, post tenure and 365-Sports, respectively) and held the position of President and Publisher of NFL Exclusive, official publication for every NFL team. Heckman holds a BA in Communications from the University of Washington. Co-founder and COO, William Sornsin, ran MSN's Core Technology team before joining Rivals as co-founder and CTO in 1999, co-founded Scout.com as CTO/COO; was VP Engineering & Operations at Fox Interactive Media after Scout acquisition. Earlier, Sornsin held a variety of product and program management roles at Microsoft. He holds a BS Electrical/Computer Engineering from the University of Iowa and an MBA from UCLA. Co-founder and CTO, Benjamin Joldersma’s career spans nearly two decades of large-scale platform development, including CTO and chief architect of Scout.com. Ben held the role of Senior software engineer, Geo/Imagery at Google, a Principal Software Engineer at Yahoo!, Chief Architect at 5to1 and held senior engineering roles at aQuantive, Rivals.com and Microsoft. Ben studied Computer Science at University of Puget Sound. Director, Ross Levinsohn is a leading industry figure who has long focused on the convergence of technology and media. He served as CEO at Yahoo in 2012 and prior to that role was Executive Vice President, Americas and Head of Global Media from 2010 to 2012. Levinsohn served as President of Fox Interactive where he helped create one of the largest digital businesses amongst the traditional media companies, and was instrumental in the formation of what is now Hulu. He serves on several public and private media and technology boards, including Tribune Media, mobile advertising marketplace YieldMo, Vubiquity, Zefr, and the National Association of Television Program Executives. He was Executive Chairman and Director of Scout Media, Inc. from 2014-2016, previously served as the Chief Executive Officer of Guggenheim Digital Media and co-founded 5to1 Holding Corp, serving as its Executive Chairman. He co-founded Fuse Capital in 2005 and served as its Managing Director and Managing Partner. He served as General Manager at AltaVista Network and Vice President of Programming and Executive Producer at CBS Sportsline. Mr. Levinsohn received a BA in Broadcast Communications from American University, and is a trustee there.


Phased array technology available now to meet emerging billion dollar 5G markets TowerJazz, the global specialty foundry leader, and The University of California, San Diego (UCSD), a recognized leader for microwave, millimeter-wave, mixed-signal RFICs, and phased arrays, demonstrate for the first time, a greater than 12 Gbps, 5G phased-array chipset.  This chipset demonstrates that products can be fabricated today to meet the emerging 5G telecom standards for the next wave of worldwide mobile communications. The chipset operates at 28 to 31 GHz, a new communications band planned for release by the FCC. The chipset uses TowerJazz’s high volume SiGe BiCMOS technology, with record performance at the 28GHz band, representing a more than 10-times improvement in data rate vs. 4G LTE, and today meets many other technical specification requirements of the emerging 5G standard. About the 5G Chip Sets and H3 Process The 5G transmit and receive chipsets reported today achieved more than 12 Gbps data rates at 30 meters separation, and greater than 3 Gbps when separated by 300 meters, using two polarizations.  The UCSD chip utilizes 16-64-256 QAM (quadrature amplitude modulation) schemes to achieve these data rates.  The measured EVM (error vector magnitude), a figure of merit used to determine the quality of the data received, suggests both chipsets are already performing at 4G LTE levels.  The 64-QAM link reported today at 12 Gbps, has an EVM < 5% at 30 meters.  The 16 QAM link at 3 Gbps has an EVM <12% at 300m and over all scan angles, and all with no FEC or equalization. The system operates in a dual-polarization mode.  In addition, the 4 x 8 (32-element) phased-arrays use SiGe core chips and are assembled on a multi-layer printed-circuit board together with the antennas.  Record figures of merit such as NF (Noise Figure), EIRP (Equivalent Isotropically Radiated Power), and EVM have been demonstrated. “The TowerJazz H3 platform is truly great, and allows for 13-20 dBm transmit power per element with high PAE (power-added efficiency) of 20% at 28 GHz. Also, it offers very low-noise transistors resulting in an LNA NF of 2.4 dB at 28 GHz, high-Q inductors and low-loss transmission-lines for on-chip power distribution,” said Prof. Gabriel Rebeiz, member of the U.S. National Academy of Engineering, distinguished professor and wireless communications industry chair at the UC San Diego Jacobs School of Engineering. By using TowerJazz’s SiGe BiCMOS technology, UCSD’s design team, led by graduate student Kerim Kibaroglu and post-doctoral fellow Mustafa Sayginer, and with the use of state-of-the-art Keysight equipment such as the 8195A Arbitrary Wave Generator, the DSOS804A Digital Scope and the Signal Studio suite with the VSA software, was able to achieve record links at 30 to 300 meters over all scan angles. Prof. Rebeiz added, “We thank TowerJazz for this wonderful process and look forward to continued collaboration.” Today, peak wireless data rates for 4G LTE can be up to 1 Gbps, but are nominally lower around 100 to 300 Mbps.  Here, TowerJazz has demonstrated more than 10x those speeds using the UCSD 5G next-generation mobile designs made with its high volume H3 technology. “We continue to release additional technology nodes, e.g. our H5 and H6, which have even lower noise devices and higher speed capabilities. These technologies will enable 5G designers to further increase data rates through higher QAM modulation schemes, or shrink chip sizes and increase the distance over which these 5G chips can perform,” said Dr. David Howard, Executive Director and TowerJazz Fellow.   “Also, as we add new features to our SiGe Terabit Platform, we support easy evolution of customer technology for fast time to market. This allows our customers to grow their technology roadmap and products as the 5G standards evolve.” Availability The SBC18H3 process, as well as H4, H5 processes, are available through TowerJazz at www.towerjazz.com. Chips used in the technology demonstrations are available from UCSD and interested parties should contact Prof. Gabriel M. Rebeiz; Department of Electrical and Computing Engineering at UCSD, 858/336-3186 or rebeiz@ece.ucsd.edu. About Phased Arrays Phased arrays allow the electronic steering of an antenna beam in any direction and with high antenna gain by controlling the phase at each antenna element. The radiated beam can be “moved in space” using entirely electronic means through control of the phase and amplitude at each antenna element used to generate the beam. This beam steering technique is much more compact and much faster than mechanically steered arrays. Furthermore, phased arrays allow the creation of deep nulls in the radiation pattern to mitigate strong interference signals from several different directions. They have been in use since the 1950s in defense applications and are receiving intense commercial interest for automotive (radars) and communication (5G) chip markets. About UCSD The University of California, San Diego, is one of the leading Universities in mixed-signal, microwave and mm-wave RFICs, digital communications, applied electromagnetics, RF MEMS (microelectromechanical systems) and nano-electronics research, and is home to the Center for Wireless Communications.  UCSD has an annual research budget exceeding $850M, and its Jacobs School of Engineering is ranked as Number 17 in the US-News and World Report 2015 ranking.  The Electrical and Computer Engineering Department, consisting of 46 teaching tenured faculty, trains approximately 400 graduate students per year. For more information, please visit www.ece.ucsd.edu and www.ucsd.edu. About TowerJazz Tower Semiconductor Ltd. (NASDAQ:TSEM) (TASE:TSEM) and its fully owned U.S. subsidiaries Jazz Semiconductor, Inc. and TowerJazz Texas Inc., operate collectively under the brand name TowerJazz, the global specialty foundry leader. TowerJazz manufactures integrated circuits, offering a broad range of customizable process technologies including: SiGe, BiCMOS, mixed-signal/CMOS, RF CMOS, CMOS image sensor, integrated power management (BCD and 700V), and MEMS. TowerJazz also provides a world-class design enablement platform for a quick and accurate design cycle as well as Transfer Optimization and development Process Services (TOPS) to IDMs and fabless companies that need to expand capacity. To provide multi-fab sourcing and extended capacity for its customers, TowerJazz operates two manufacturing facilities in Israel (150mm and 200mm), two in the U.S. (200mm) and three additional facilities in Japan (two 200mm and one 300mm) through TowerJazz Panasonic Semiconductor Co. (TPSCo), established with Panasonic Corporation of which TowerJazz has the majority holding. Through TPSCo, TowerJazz provides leading edge 45nm CMOS, 65nm RF CMOS and 65nm 1.12um pixel technologies, including the most advanced image sensor technologies. For more information, please visit www.towerjazz.com or www.tpsemico.com. Safe Harbor Regarding Forward-Looking Statements This press release includes forward-looking statements, which are subject to risks and uncertainties. Actual results may vary from those projected or implied by such forward-looking statements. A complete discussion of risks and uncertainties that may affect the accuracy of forward-looking statements included in this press release or which may otherwise affect TowerJazz’s business is included under the heading "Risk Factors" in Tower’s most recent filings on Forms 20-F, F-3, F-4 and 6-K, as were filed with the Securities and Exchange Commission (the “SEC”) and the Israel Securities Authority and Jazz’s most recent filings on Forms 10-K and 10-Q, as were filed with the SEC, respectively. Tower and Jazz do not intend to update, and expressly disclaim any obligation to update, the information contained in this release.


Phased array technology available now to meet emerging billion dollar 5G markets TowerJazz, the global specialty foundry leader, and The University of California, San Diego (UCSD), a recognized leader for microwave, millimeter-wave, mixed-signal RFICs, and phased arrays, demonstrate for the first time, a greater than 12 Gbps, 5G phased-array chipset.  This chipset demonstrates that products can be fabricated today to meet the emerging 5G telecom standards for the next wave of worldwide mobile communications. The chipset operates at 28 to 31 GHz, a new communications band planned for release by the FCC. The chipset uses TowerJazz’s high volume SiGe BiCMOS technology, with record performance at the 28GHz band, representing a more than 10-times improvement in data rate vs. 4G LTE, and today meets many other technical specification requirements of the emerging 5G standard. About the 5G Chip Sets and H3 Process The 5G transmit and receive chipsets reported today achieved more than 12 Gbps data rates at 30 meters separation, and greater than 3 Gbps when separated by 300 meters, using two polarizations.  The UCSD chip utilizes 16-64-256 QAM (quadrature amplitude modulation) schemes to achieve these data rates.  The measured EVM (error vector magnitude), a figure of merit used to determine the quality of the data received, suggests both chipsets are already performing at 4G LTE levels.  The 64-QAM link reported today at 12 Gbps, has an EVM < 5% at 30 meters.  The 16 QAM link at 3 Gbps has an EVM <12% at 300m and over all scan angles, and all with no FEC or equalization. The system operates in a dual-polarization mode.  In addition, the 4 x 8 (32-element) phased-arrays use SiGe core chips and are assembled on a multi-layer printed-circuit board together with the antennas.  Record figures of merit such as NF (Noise Figure), EIRP (Equivalent Isotropically Radiated Power), and EVM have been demonstrated. “The TowerJazz H3 platform is truly great, and allows for 13-20 dBm transmit power per element with high PAE (power-added efficiency) of 20% at 28 GHz. Also, it offers very low-noise transistors resulting in an LNA NF of 2.4 dB at 28 GHz, high-Q inductors and low-loss transmission-lines for on-chip power distribution,” said Prof. Gabriel Rebeiz, member of the U.S. National Academy of Engineering, distinguished professor and wireless communications industry chair at the UC San Diego Jacobs School of Engineering. By using TowerJazz’s SiGe BiCMOS technology, UCSD’s design team, led by graduate student Kerim Kibaroglu and post-doctoral fellow Mustafa Sayginer, and with the use of state-of-the-art Keysight equipment such as the 8195A Arbitrary Wave Generator, the DSOS804A Digital Scope and the Signal Studio suite with the VSA software, was able to achieve record links at 30 to 300 meters over all scan angles. Prof. Rebeiz added, “We thank TowerJazz for this wonderful process and look forward to continued collaboration.” Today, peak wireless data rates for 4G LTE can be up to 1 Gbps, but are nominally lower around 100 to 300 Mbps.  Here, TowerJazz has demonstrated more than 10x those speeds using the UCSD 5G next-generation mobile designs made with its high volume H3 technology. “We continue to release additional technology nodes, e.g. our H5 and H6, which have even lower noise devices and higher speed capabilities. These technologies will enable 5G designers to further increase data rates through higher QAM modulation schemes, or shrink chip sizes and increase the distance over which these 5G chips can perform,” said Dr. David Howard, Executive Director and TowerJazz Fellow.   “Also, as we add new features to our SiGe Terabit Platform, we support easy evolution of customer technology for fast time to market. This allows our customers to grow their technology roadmap and products as the 5G standards evolve.” Availability The SBC18H3 process, as well as H4, H5 processes, are available through TowerJazz at www.towerjazz.com. Chips used in the technology demonstrations are available from UCSD and interested parties should contact Prof. Gabriel M. Rebeiz; Department of Electrical and Computing Engineering at UCSD, 858/336-3186 or rebeiz@ece.ucsd.edu. About Phased Arrays Phased arrays allow the electronic steering of an antenna beam in any direction and with high antenna gain by controlling the phase at each antenna element. The radiated beam can be “moved in space” using entirely electronic means through control of the phase and amplitude at each antenna element used to generate the beam. This beam steering technique is much more compact and much faster than mechanically steered arrays. Furthermore, phased arrays allow the creation of deep nulls in the radiation pattern to mitigate strong interference signals from several different directions. They have been in use since the 1950s in defense applications and are receiving intense commercial interest for automotive (radars) and communication (5G) chip markets. About UCSD The University of California, San Diego, is one of the leading Universities in mixed-signal, microwave and mm-wave RFICs, digital communications, applied electromagnetics, RF MEMS (microelectromechanical systems) and nano-electronics research, and is home to the Center for Wireless Communications.  UCSD has an annual research budget exceeding $850M, and its Jacobs School of Engineering is ranked as Number 17 in the US-News and World Report 2015 ranking.  The Electrical and Computer Engineering Department, consisting of 46 teaching tenured faculty, trains approximately 400 graduate students per year. For more information, please visit www.ece.ucsd.edu and www.ucsd.edu. About TowerJazz Tower Semiconductor Ltd. (NASDAQ:TSEM) (TASE:TSEM) and its fully owned U.S. subsidiaries Jazz Semiconductor, Inc. and TowerJazz Texas Inc., operate collectively under the brand name TowerJazz, the global specialty foundry leader. TowerJazz manufactures integrated circuits, offering a broad range of customizable process technologies including: SiGe, BiCMOS, mixed-signal/CMOS, RF CMOS, CMOS image sensor, integrated power management (BCD and 700V), and MEMS. TowerJazz also provides a world-class design enablement platform for a quick and accurate design cycle as well as Transfer Optimization and development Process Services (TOPS) to IDMs and fabless companies that need to expand capacity. To provide multi-fab sourcing and extended capacity for its customers, TowerJazz operates two manufacturing facilities in Israel (150mm and 200mm), two in the U.S. (200mm) and three additional facilities in Japan (two 200mm and one 300mm) through TowerJazz Panasonic Semiconductor Co. (TPSCo), established with Panasonic Corporation of which TowerJazz has the majority holding. Through TPSCo, TowerJazz provides leading edge 45nm CMOS, 65nm RF CMOS and 65nm 1.12um pixel technologies, including the most advanced image sensor technologies. For more information, please visit www.towerjazz.com or www.tpsemico.com. Safe Harbor Regarding Forward-Looking Statements This press release includes forward-looking statements, which are subject to risks and uncertainties. Actual results may vary from those projected or implied by such forward-looking statements. A complete discussion of risks and uncertainties that may affect the accuracy of forward-looking statements included in this press release or which may otherwise affect TowerJazz’s business is included under the heading "Risk Factors" in Tower’s most recent filings on Forms 20-F, F-3, F-4 and 6-K, as were filed with the Securities and Exchange Commission (the “SEC”) and the Israel Securities Authority and Jazz’s most recent filings on Forms 10-K and 10-Q, as were filed with the SEC, respectively. Tower and Jazz do not intend to update, and expressly disclaim any obligation to update, the information contained in this release.

Loading Computer Engineering collaborators
Loading Computer Engineering collaborators