Computational Biology Research Unit

San Michele all'Adige, Italy

Computational Biology Research Unit

San Michele all'Adige, Italy
SEARCH FILTERS
Time filter
Source Type

Strati F.,Computational Biology Research Unit | Strati F.,University of Trento | Cavalieri D.,University of Florence | Albanese D.,Computational Biology Research Unit | And 9 more authors.
Microbiome | Year: 2017

Background: Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by social and behavioural impairments. In addition to neurological symptoms, ASD subjects frequently suffer from gastrointestinal abnormalities, thus implying a role of the gut microbiota in ASD gastrointestinal pathophysiology. Results: Here, we characterized the bacterial and fungal gut microbiota in a cohort of autistic individuals demonstrating the presence of an altered microbial community structure. A fraction of 90% of the autistic subjects were classified as severe ASDs. We found a significant increase in the Firmicutes/Bacteroidetes ratio in autistic subjects due to a reduction of the Bacteroidetes relative abundance. At the genus level, we observed a decrease in the relative abundance of Alistipes, Bilophila, Dialister, Parabacteroides, and Veillonella in the ASD cohort, while Collinsella, Corynebacterium, Dorea, and Lactobacillus were significantly increased. Constipation has been then associated with different bacterial patterns in autistic and neurotypical subjects, with constipated autistic individuals characterized by high levels of bacterial taxa belonging to Escherichia/Shigella and Clostridium cluster XVIII. We also observed that the relative abundance of the fungal genus Candida was more than double in the autistic than neurotypical subjects, yet due to a larger dispersion of values, this difference was only partially significant. Conclusions: The finding that, besides the bacterial gut microbiota, also the gut mycobiota contributes to the alteration of the intestinal microbial community structure in ASDs opens the possibility for new potential intervention strategies aimed at the relief of gastrointestinal symptoms in ASDs. © The Author(s) 2017.


Alibrandi P.,University of Palermo | Cardinale M.,Justus Liebig University | Rahman M.M.,Justus Liebig University | Strati F.,Computational Biology Research Unit | And 9 more authors.
Plant and Soil | Year: 2017

Background and aims: Plant seeds are emerging micro–habitats, whose importance as reservoir and vector of beneficial microbes just begins to be recognized. Here we aimed to characterize the bacterial microbiota of the Anadenanthera colubrina seed endosphere, with special focus to beneficial traits and to the colonization pattern. Methods: Cultivation–dependent (isolation from surface–sterilized seeds) and cultivation–independent (pyrosequencing of 16S rRNA gene from metagenomic seed DNA) analyses, functional tests and microscopical investigations (fluorescence in situ hybridization coupled with confocal laser scanning microscopy (FISH-CLSM) were performed. Results: We isolated several Methylobacterium and Staphylococcus spp., exhibiting both plant growth promotion and antimicrobial activities. The two taxonomic groups showed complementary traits, which supports a functional selection. Both genera were detected also by pyrosequencing, together with further taxa. The genera Friedmaniella, Bifidobacterium, Delftia, Anaerococcus and Actinomyces appeared here for the first time as seed endophytes. We detected bacterial cells and micro–colonies in seed cryosections by FISH-CLSM. Alphaproteobacteria, Firmicutes and other bacteria colonized intercellular spaces of the parenchyma and associated to transport vessels. Conclusions: This work sheds light onto the diversity, functions and colonization pattern of the Anadenanthera colubrina seed endophytes, and strongly suggest a role as beneficial partners for seed-associated microbiota. © 2017 Springer International Publishing Switzerland

Loading Computational Biology Research Unit collaborators
Loading Computational Biology Research Unit collaborators