Computational Biology Laboratory DLab

Santiago, Chile

Computational Biology Laboratory DLab

Santiago, Chile
SEARCH FILTERS
Time filter
Source Type

Vargas A.A.,University of Santiago de Chile | Cisterna B.A.,University of Santiago de Chile | Cisterna B.A.,University of Valparaíso | Saavedra-Leiva F.,University of Santiago de Chile | And 17 more authors.
Frontiers in Physiology | Year: 2017

Although connexins (Cxs) are broadly expressed by cells of mammalian organisms, Cx39 has a very restricted pattern of expression and the biophysical properties of Cx39-based channels [hemichannels (HCs) and gap junction channels (GJCs)] remain largely unknown. Here, we used HeLa cells transfected with Cx39 (HeLa-Cx39 cells) in which intercellular electrical coupling was not detected, indicating the absence of GJCs. However, functional HCs were found on the surface of cells exposed to conditions known to increase the open probability of other Cx HCs (e.g., extracellular divalent cationic-free solution (DCFS), extracellular alkaline pH, mechanical stimulus and depolarization to positive membrane potentials). Cx39 HCs were blocked by some traditional Cx HC blockers, but not by others or a pannexin1 channel blocker. HeLa-Cx39 cells showed similar resting membrane potentials (RMPs) to those of parental cells, and exposure to DCFS reduced RMPs in Cx39 transfectants, but not in parental cells. Under these conditions, unitary events of ~75 pS were frequent in HeLa-Cx39 cells and absent in parental cells. Real-time cellular uptake experiments of dyes with different physicochemical features, as well as the application of a machine-learning approach revealed that Cx39 HCs are preferentially permeable to molecules characterized by six categories of descriptors, namely: (1) electronegativity, (2) ionization potential, (3) polarizability, (4) size and geometry, (5) topological flexibility and (6) valence. However, Cx39 HCs opened by mechanical stimulation or alkaline pH were impermeable to Ca2+. Molecular modeling of Cx39-based channels suggest that a constriction present at the intracellular portion of the para helix region co-localizes with an electronegative patch, imposing an energetic and steric barrier, which in the case of GJCs may hinder channel function. Results reported here demonstrate that Cx39 form HCs and add to our understanding of the functional roles of Cx39 HCs under physiological and pathological conditions in cells that express them. © 2017 Vargas, Cisterna, Saavedra-Leiva, Urrutia, Cea, Vielma, Gutierrez-Maldonado, Martin, Pareja-Barrueto, Escalona, Schmachtenberg, Lagos, Perez-Acle and Sáez.


Martin A.J.,Computational Biology Laboratory DLab | Martin A.J.,Centro Interdisciplinario Of Neurociencia Of Valparaiso | Contreras-Riquelme S.,Computational Biology Laboratory DLab | Contreras-Riquelme S.,Andrés Bello University | And 3 more authors.
PeerJ | Year: 2017

One of the main challenges of the post-genomic era is the understanding of how gene expression is controlled. Changes in gene expression lay behind diverse biological phenomena such as development, disease and the adaptation to different environmental conditions. Despite the availability of well-established methods to identify these changes, tools to discern how gene regulation is orchestrated are still required. The regulation of gene expression is usually depicted as a Gene Regulatory Network (GRN) where changes in the network structure (i.e., network topology) represent adjustments of gene regulation. Like other networks, GRNs are composed of basic building blocks; small induced subgraphs called graphlets. Here we present LoTo, a novel method that using Graphlet Based Metrics (GBMs) identifies topological variations between different states of a GRN. Under our approach, different states of a GRN are analyzed to determine the types of graphlet formed by all triplets of nodes in the network. Subsequently, graphlets occurring in a state of the network are compared to those formed by the same three nodes in another version of the network. Once the comparisons are performed, LoTo applies metrics from binary classification problems calculated on the existence and absence of graphlets to assess the topological similarity between both network states. Experiments performed on randomized networks demonstrate that GBMs are more sensitive to topological variation than the same metrics calculated on single edges. Additional comparisons with other common metrics demonstrate that our GBMs are capable to identify nodes whose local topology changes between different states of the network. Notably, due to the explicit use of graphlets, LoTo captures topological variations that are disregarded by other approaches. LoTo is freely available as an online web server at http://dlab.cl/loto. © 2017 Martin et al.


Gutierrez-Maldonado S.E.,Computational Biology Laboratory DLab | Gutierrez-Maldonado S.E.,Centro Interdisciplinario Of Neurociencias Of Valparaiso Cinv | Garate J.A.,Computational Biology Laboratory DLab | Garate J.A.,Centro Interdisciplinario Of Neurociencias Of Valparaiso Cinv | And 5 more authors.
Chemical Physics Letters | Year: 2017

Medium-chain alkanes are important molecules with applications in biology and industry. Notably, their structural properties are scarcely understood. To assess structural and thermodynamic properties of dotriacontane (C32) molecules adsorbed on a SiO2 surface, we conducted all-atom molecular dynamics (MD) simulations. By analyzing potentials of mean force, order parameters and self-diffusion, we compared the stability and preferential orientation between ordered and disordered systems. Our data confirm the presence of one parallel layer of C32 followed by a mixture of disordered C32 segments exhibiting no thermodynamic preference. This semi-ordered structural model shed light to the interactions between C32 and a SiO2 surface. © 2017 Elsevier B.V.


Abarca F.,Computational Biology Laboratory DLab | Abarca F.,University of Valparaíso | Gutierrez-Maldonado S.E.,Computational Biology Laboratory DLab | Gutierrez-Maldonado S.E.,University of Valparaíso | And 5 more authors.
PeerJ | Year: 2014

Licanantase (Lic) is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery frombioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can formstable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm "Rosetta Fold-and-Dock". To assess the structural stability of our model, Molecular Dynamics (MD) and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic's secondary and tertiary structure. © 2014 Abarca et al.


Araya-Secchi R.,Computational Biology Laboratory DLab | Araya-Secchi R.,IBM | Araya-Secchi R.,University of Valparaíso | Perez-Acle T.,Computational Biology Laboratory DLab | And 14 more authors.
Biophysical Journal | Year: 2014

Connexins (Cxs) are a family of vertebrate proteins constituents of gap junction channels (GJCs) that connect the cytoplasm of adjacent cells by the end-to-end docking of two Cx hemichannels. The intercellular transfer through GJCs occurs by passive diffusion allowing the exchange of water, ions, and small molecules. Despite the broad interest to understand, at the molecular level, the functional state of Cx-based channels, there are still many unanswered questions regarding structure-function relationships, perm-selectivity, and gating mechanisms. In particular, the ordering, structure, and dynamics of water inside Cx GJCs and hemichannels remains largely unexplored. In this work, we describe the identification and characterization of a believed novel water pocket - termed the IC pocket - located in-between the four transmembrane helices of each human Cx26 (hCx26) monomer at the intracellular (IC) side. Using molecular dynamics (MD) simulations to characterize hCx26 internal water structure and dynamics, six IC pockets were identified per hemichannel. A detailed characterization of the dynamics and ordering of water including conformational variability of residues forming the IC pockets, together with multiple sequence alignments, allowed us to propose a functional role for this cavity. An in vitro assessment of tracer uptake suggests that the IC pocket residue Arg-143 plays an essential role on the modulation of the hCx26 hemichannel permeability. © 2014 Biophysical Society.


Retamal M.J.,University of Santiago de Chile | Cisternas M.A.,University of Santiago de Chile | Gutierrez-Maldonado S.E.,Computational Biology Laboratory DLab | Gutierrez-Maldonado S.E.,University of Valparaíso | And 6 more authors.
Journal of Chemical Physics | Year: 2014

The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer. © 2014 AIP Publishing LLC.


Escalona Y.,Computational Biology Laboratory DLab | Garate J.A.,Computational Biology Laboratory DLab | Garate J.A.,University of Valparaíso | Araya-Secchi R.,Ohio State University | And 4 more authors.
Biophysical Journal | Year: 2016

The conductance of ion channels can be modulated by a transmembrane potential difference, due to alterations on ion-mobility and also by changes in the pore structure. Despite the vast knowledge regarding the influence of voltage on transport properties of ion channels, little attention has been paid to describe, with atomic detail, the modulation of ionic transport in gap-junction channels (GJCs). Hence, molecular dynamics simulations were performed to explore the conductance of simple dual-membrane systems that account for the very basic features of GJCs. In doing so, we studied the influence of different charge distributions in the channel surface on these idealized systems under external electric fields, paying attention to the behavior of the electrostatic potential, ion density, ion currents, and equilibrium properties. Our results demonstrate that the incorporation of a charge distribution akin GJCs decreased anionic currents, favoring the transport of cationic species. Moreover, a thermodynamic characterization of ionic transport in these systems demonstrate the existence of a kinetic barrier that hinders anionic currents, reinforcing the role played by the internal arrangement of charges in GJCs. Overall, our results provide insights at the atomic scale on the effects of charge distributions over ionic transport, constituting a step forward into a better understanding of GJCs. © 2016 Biophysical Society.


PubMed | Computational Biology Laboratory DLab, Ohio State University, IBM and University of Valparaíso
Type: Journal Article | Journal: Biophysical journal | Year: 2016

The conductance of ion channels can be modulated by a transmembrane potential difference, due to alterations on ion-mobility and also by changes in the pore structure. Despite the vast knowledge regarding the influence of voltage on transport properties of ion channels, little attention has been paid to describe, with atomic detail, the modulation of ionic transport in gap-junction channels (GJCs). Hence, molecular dynamics simulations were performed to explore the conductance of simple dual-membrane systems that account for the very basic features of GJCs. In doing so, we studied the influence of different charge distributions in the channel surface on these idealized systems under external electric fields, paying attention to the behavior of the electrostatic potential, ion density, ion currents, and equilibrium properties. Our results demonstrate that the incorporation of a charge distribution akin GJCs decreased anionic currents, favoring the transport of cationic species. Moreover, a thermodynamic characterization of ionic transport in these systems demonstrate the existence of a kinetic barrier that hinders anionic currents, reinforcing the role played by the internal arrangement of charges in GJCs. Overall, our results provide insights at the atomic scale on the effects of charge distributions over ionic transport, constituting a step forward into a better understanding of GJCs.

Loading Computational Biology Laboratory DLab collaborators
Loading Computational Biology Laboratory DLab collaborators