Time filter

Source Type

Sandy Springs, GA, United States

Cook P.F.,Emory University | Spivak M.,Comprehensive Pet Therapy | Berns G.S.,Emory University
PeerJ | Year: 2014

Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog's respective handler), an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog's general aggressivity as measured by the C-BARQcanine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer). A group-level psychophysiological interaction (PPI) connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications pertinent to the training and assessment of working and pet dogs. © 2014 Cook et al. Source

Berns G.S.,Emory University | Brooks A.M.,Emory University | Spivak M.,Comprehensive Pet Therapy
Behavioural Processes | Year: 2015

Understanding dogs' perceptual experience of both conspecifics and humans is important to understand how dogs evolved and the nature of their relationships with humans and other dogs. Olfaction is believed to be dogs' most powerful and perhaps important sense and an obvious place to begin for the study of social cognition of conspecifics and humans. We used fMRI in a cohort of dogs (N=12) that had been trained to remain motionless while unsedated and unrestrained in the MRI. By presenting scents from humans and conspecifics, we aimed to identify the dimensions of dogs' responses to salient biological odors - whether they are based on species (dog or human), familiarity, or a specific combination of factors. We focused our analysis on the dog's caudate nucleus because of its well-known association with positive expectations and because of its clearly defined anatomical location. We hypothesized that if dogs' primary association to reward, whether it is based on food or social bonds, is to humans, then the human scents would activate the caudate more than the conspecific scents. Conversely, if the smell of conspecifics activated the caudate more than the smell of humans, dogs' association to reward would be stronger to their fellow canines. Five scents were presented (self, familiar human, strange human, familiar dog, strange dog). While the olfactory bulb/peduncle was activated to a similar degree by all the scents, the caudate was activated maximally to the familiar human. Importantly, the scent of the familiar human was not the handler, meaning that the caudate response differentiated the scent in the absence of the person being present. The caudate activation suggested that not only did the dogs discriminate that scent from the others, they had a positive association with it. This speaks to the power of the dog's sense of smell, and it provides important clues about the importance of humans in dogs' lives.This article is part of a Special Issue entitled: Canine Behavior. © 2014 The Authors. Source

Berns G.S.,Emory University | Brooks A.M.,Emory University | Spivak M.,Comprehensive Pet Therapy
PLoS ONE | Year: 2012

Because of dogs' prolonged evolution with humans, many of the canine cognitive skills are thought to represent a selection of traits that make dogs particularly sensitive to human cues. But how does the dog mind actually work? To develop a methodology to answer this question, we trained two dogs to remain motionless for the duration required to collect quality fMRI images by using positive reinforcement without sedation or physical restraints. The task was designed to determine which brain circuits differentially respond to human hand signals denoting the presence or absence of a food reward. Head motion within trials was less than 1 mm. Consistent with prior reinforcement learning literature, we observed caudate activation in both dogs in response to the hand signal denoting reward versus no-reward. © 2012 Berns et al. Source

Dilks D.D.,Emory University | Cook P.,Emory University | Weiller S.K.,Emory University | Berns H.P.,Emory University | And 2 more authors.
PeerJ | Year: 2015

Recent behavioral evidence suggests that dogs, like humans and monkeys, are capable of visual face recognition. But do dogs also exhibit specialized cortical face regions similar to humans and monkeys? Using functional magnetic resonance imaging (fMRI) in six dogs trained to remain motionless during scanning without restraint or sedation, we found a region in the canine temporal lobe that responded significantly more to movies of human faces than to movies of everyday objects. Next, using a new stimulus set to investigate face selectivity in this predefined candidate dog face area, we found that this region responded similarly to images of human faces and dog faces, yet significantly more to both human and dog faces than to images of objects. Such face selectivity was not found in dog primary visual cortex. Taken together, these findings: (1) provide the first evidence for a face-selective region in the temporal cortex of dogs, which cannot be explained by simple low-level visual feature extraction; (2) reveal that neural machinery dedicated to face processing is not unique to primates; and (3) may help explain dogs' exquisite sensitivity to human social cues. © 2015 Dilks et al. Source

Cook P.F.,Emory University | Spivak M.,Comprehensive Pet Therapy | Berns G.,Emory University
Animal Cognition | Year: 2016

Based on behavioral evidence, the domestic dog has emerged as a promising comparative model of human self-control. However, while research on human inhibition has probed heterogeneity and neuropathology through an integration of neural and behavioral evidence, there are no parallel data exploring the brain mechanisms involved in canine inhibition. Here, using a combination of cognitive testing and awake neuroimaging in domestic dogs, we provide evidence precisely localizing frontal brain regions underpinning response inhibition in this species and demonstrate the dynamic relationship between these regions and behavioral measures of control. Thirteen dogs took part in an in-scanner go/no-go task and an out-of-scanner A-not-B test. A frontal brain region was identified showing elevated neural activity for all subjects during successful inhibition in the scanner, and dogs showing greater mean brain activation in this region produced fewer false alarms. Better performance in the go/no-go task was also correlated with fewer errors in the out-of-scanner A-not-B test, suggesting that dogs show consistent neurobehavioral individual differences in cognitive control, as is seen in humans. These findings help establish parity between human and canine mechanisms of self-control and pave the way for future comparative studies examining their function and dysfunction. © 2016 Springer-Verlag Berlin Heidelberg Source

Discover hidden collaborations