Time filter

Source Type

Vida R.,Comillas Pontifical University | Galeano J.,Technical University of Madrid | Galeano J.,Complex Systems Group GSC | Cuenda S.,Grupo Interdisciplinar de Sistemas Complejos GISC | Cuenda S.,Autonomous University of Madrid
Physica A: Statistical Mechanics and its Applications | Year: 2015

Computer viruses are evolving by developing spreading mechanisms based on the use of multiple vectors of propagation. The use of the social network as an extra vector of attack to penetrate the security measures in IP networks is improving the effectiveness of malware, and have therefore been used by the most aggressive viruses, like Conficker and Stuxnet. In this work we use interdependent networks to model the propagation of these kind of viruses. In particular, we study the propagation of a SIS model on interdependent networks where the state of each node is layer-independent and the dynamics in each network follows either a contact process or a reactive process, with different propagation rates. We apply this study to the case of existing interdependent networks, namely a Spanish scientific community of Statistical Physics, formed by a social network of scientific collaborations and a physical network of connected computers in each institution. We show that the interplay between layers increases dramatically the infectivity of viruses in the long term and their robustness against immunization. © 2014 Elsevier B.V.

Loading Complex Systems Group GSC collaborators
Loading Complex Systems Group GSC collaborators