Time filter

Source Type

Athens, GA, United States

Goldberg R.N.,U.S. National Institute of Standards and Technology | Schliesser J.,Brigham Young University | Mittal A.,National Renewable Energy Laboratory | Decker S.R.,National Renewable Energy Laboratory | And 10 more authors.
Journal of Chemical Thermodynamics | Year: 2014

The thermochemistry of samples of amorphous cellulose, cellulose I, cellulose II, and cellulose III was studied by using oxygen bomb calorimetry, solution calorimetry in which the solvent was cadoxen (a cadmium ethylenediamine solvent), and with a Physical Property Measurement System (PPMS) in zero magnetic field to measure standard massic heat capacities Cp,w over the temperature range T = (2 to 302) K. The samples used in this study were prepared so as to have different values of crystallinity indexes CI and were characterized by X-ray diffraction, by Karl Fischer moisture determination, and by using gel permeation chromatography to determine the weight average degree of polymerization DPw. NMR measurements on solutions containing the samples dissolved in cadoxen were also performed in an attempt to resolve the issue of the equivalency or non-equivalency of the nuclei in the different forms of cellulose that were dissolved in cadoxen. While large differences in the NMR spectra for the various cellulose samples in cadoxen were not observed, one cannot be absolutely certain that these cellulose samples are chemically equivalent in cadoxen. Equations were derived which allow one to adjust measured property values of cellulose samples having a mass fraction of water wH2 O to a reference value of the mass fraction of water wref. The measured thermodynamic properties (standard massic enthalpy of combustion ΔcHw, standard massic enthalpy of solution ΔsolHw, and Cp,w) were used in conjunction with the measured CI values to calculate values of the changes in the standard massic enthalpies of reactionΔrHw, the standard massic entropies of reaction ΔrSw, the standard massic Gibbs free energies of reaction ΔrGw, and the standard massic heat capacity ΔrCp,w, for the interconversion reactions of the pure (CI = 100) cellulose allomorphs, i.e., cellulose(am), cellulose I(cr), cellulose II(cr), and cellulose II(cr), at the temperature T = 298.15 K, the pressure p = 0.1 MPa, and wH2 O = 0.073. The "∗" denotes that the thermodynamic property pertains to pure cellulose allomorphs. Values of standard massic enthalpy differences Δ0THw, standard massic entropy differences Δ0TSw, and the standard massic thermal function Φw=Δ0TSw-Δ0THw/T were calculated from the measured heat capacities for the cellulose samples and for the pure cellulose allomorphs. The extensive literature pertinent to the thermodynamic properties of cellulose has been summarized and, in many cases, property values have been calculated or recalculated from previously reported data. The thermodynamic property data show that cellulose(am) is the least stable of the cellulose allomorphs considered in this study. However, due to the uncertainties in the measured property values, it is not possible to use these values to order the relative stabilities of the cellulose (I, II, and III) crystalline allomorphs with a reasonable degree of certainty. Nevertheless, based on chemical reactivity information, the qualitative order of stability for these three allomorphs is cellulose III(cr) > cellulose II(cr) > cellulose Iβ(cr) at T = 298.15 K. However, as evidenced by the fact that cellulose I(cr) can be reformed by the application of heat and water to a sample of cellulose III(cr), the differences in the stabilities of these three allomorphs appear to be small and may be temperature dependent. Standard thermodynamic formation properties as well as property values for the conversion reactions of the cellulose allomorphs to α-d-glucose(cr) have been calculated on the assumption that Sw→0 as T→0. The values for the standard massic Gibbs free energy of reaction ΔrGw for the conversion of the cellulose allomorphs to α-d-glucose(cr), with the exception of anhydrous cellulose(am), all have positive values and thus are thermodynamically not favored for mass fractions of water wH2 O < 0.073. © 2014 Elsevier Ltd. All rights reserved. Source

Guo J.,University of Sheffield | Guo J.,Complex Carbohydrate Research Center | Mayers P.C.,University of Sheffield | Breault G.A.,Astrazeneca | Hunter C.A.,University of Sheffield
Nature Chemistry | Year: 2010

The advent of template-directed synthesis has provided access to a range of new interlocked molecular architectures. Although many syntheses of molecular catenanes and rotaxanes have been reported, molecular knots are a class of molecules with topologically non-planar graphs that are rather rare. Here we report a synthetic strategy for the preparation of a molecular trefoil knot from a flexible bipyridine oligomer and a zinc(II) octahedral coordination template. The oligomer folds into a stable open-knot conformation in the presence of the template, and trapping of this arrangement through esterification or ring-closing metathesis produces the closed-knot complex. Subsequent removal of the template from the metathesis product results in a molecular trefoil knot. © 2010 Macmillan Publishers Limited. Source

Kirkland J.J.,Advanced Materials Technology, Inc. | Schuster S.A.,Advanced Materials Technology, Inc. | Johnson W.L.,Advanced Materials Technology, Inc. | Boyes B.E.,Advanced Materials Technology, Inc. | Boyes B.E.,Complex Carbohydrate Research Center
Journal of Pharmaceutical Analysis | Year: 2013

The advent of superficially porous particles (SPPs) for packed HPLC columns has changed the way that many practitioners have approached the problem of developing needed separations. The very high efficiency of such columns, combined with convenient operating conditions, modest back pressures and the ability to use conventional HPLC instruments has resulted in intense basic studies of SPP technology, and widespread applications in many sciences. This report contains an overview of the SPP technology first developed in 2006 by Advanced Materials Technology, Inc., for sub-3-μm particles, then expanded into a family of SPP products with different particle sizes, pore sizes and other physical parameters. This approach was designed so that each particle of the family could be optimized for separating a particular group of compounds, usually based on solute size. © 2013 Xi'an Jiaotong University. Source

Cui J.,University of Georgia | Chen Y.,Jilin University | Chou W.-C.,University of Georgia | Sun L.,Jilin University | And 18 more authors.
Nucleic Acids Research | Year: 2011

This report describes an integrated study on identification of potential markers for gastric cancer in patients' cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94 classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development. The Author(s) 2010. Published by Oxford University Press.2010This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2. 5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. © The Author(s) 2010. Source

Wollaston-Hayden E.E.,Complex Carbohydrate Research Center | Harris R.B.S.,University of Georgia | Bridger R.,Complex Carbohydrate Research Center | Wells L.,Complex Carbohydrate Research Center
Frontiers in Endocrinology | Year: 2014

Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked ß-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance. © 2014 Wollaston-hayden, Harris, Liu, Bridger, Xu and Wells. Source

Discover hidden collaborations