Entity

Time filter

Source Type


Collado M.,Tumour Suppressor Groups | Schuhmacher A.,Sloan Kettering Cancer Center | Canamero M.,Comparative Pathology Unit | Rodriguez-Justo M.,University College London | Serrano M.,Tumour Suppressor Groups
Cancer Cell | Year: 2011

Pancreatic acinar cells of adult mice (≥P60) are resistant to transformation by some of the most robust oncogenic insults including expression of K-Ras oncogenes and loss of p16Ink4a/p19Arf or Trp53 tumor suppressors. Yet, these acinar cells yield pancreatic intraepithelial neoplasias (mPanIN) and ductal adenocarcinomas (mPDAC) if exposed to limited bouts of non-acute pancreatitis, providing they harbor K-Ras oncogenes. Pancreatitis contributes to tumor progression by abrogating the senescence barrier characteristic of low-grade mPanINs. Attenuation of pancreatitis-induced inflammation also accelerates tissue repair and thwarts mPanIN expansion. Patients with chronic pancreatitis display senescent PanINs, providing they have received antiinflammatory drugs. These results support the concept that antiinflammatory treatment of people diagnosed with pancreatitis may reduce their risk of developing PDAC. © 2011 Elsevier Inc. Source


Maraver A.,Tumor Suppression Group | Fernandez-Marcos P.,Tumor Suppression Group | Herranz D.,Tumor Suppression Group | Herranz D.,Columbia University | And 11 more authors.
Cancer Cell | Year: 2012

Here, we have investigated the role of the Notch pathway in the generation and maintenance of Kras G12V-driven non-small cell lung carcinomas (NSCLCs). We demonstrate by genetic means that γ-secretase and RBPJ are essential for the formation of NSCLCs. Of importance, pharmacologic treatment of mice carrying autochthonous NSCLCs with a γ-secretase inhibitor (GSI) blocks cancer growth. Treated carcinomas present reduced HES1 levels and reduced phosphorylated ERK without changes in phosphorylated MEK. Mechanistically, we show that HES1 directly binds to and represses the promoter of DUSP1, encoding a dual phosphatase that is active against phospho-ERK. Accordingly, GSI treatment upregulates DUSP1 and decreases phospho-ERK. These data provide proof of the in vivo therapeutic potential of GSIs in primary NSCLCs. © 2012 Elsevier Inc. Source


Saiz-Ladera C.,CIEMAT | Canamero M.,Comparative Pathology Unit | Gomez G.,Bioinformatics Unit | Schneider R.,Telomeres and Telomerase Group | And 3 more authors.
EMBO Journal | Year: 2012

Cyclin-dependent kinase (Cdk)7, the catalytic subunit of the Cdk-activating kinase (CAK) complex has been implicated in the control of cell cycle progression and of RNA polymerase II (RNA pol II)-mediated transcription. Genetic inactivation of the Cdk7 locus revealed that whereas Cdk7 is completely dispensable for global transcription, is essential for the cell cycle via phosphorylation of Cdk1 and Cdk2. In vivo, Cdk7 is also indispensable for cell proliferation except during the initial stages of embryonic development. Interestingly, widespread elimination of Cdk7 in adult tissues with low proliferative indexes had no phenotypic consequences. However, ablation of conditional Cdk7 alleles in tissues with elevated cellular turnover led to the efficient repopulation of these tissues with Cdk7-expressing cells most likely derived from adult stem cells that may have escaped the inactivation of their targeted Cdk7 alleles. This process, a physiological attempt to maintain tissue homeostasis, led to the attrition of adult stem cell pools and to the appearance of age-related phenotypes, including telomere shortening and early death. ©2012 European Molecular Biology Organization. Source


Remeseiro S.,Chromosome Dynamics Group | Cuadrado A.,Chromosome Dynamics Group | Carretero M.,Chromosome Dynamics Group | Martnez P.,Telomeres and Telomerase Group | And 5 more authors.
EMBO Journal | Year: 2012

Cohesin is a protein complex originally identified for its role in sister chromatid cohesion, although increasing evidence portrays it also as a major organizer of interphase chromatin. Vertebrate cohesin consists of Smc1, Smc3, Rad21/Scc1 and either stromal antigen 1 (SA1) or SA2. To explore the functional specificity of these two versions of cohesin and their relevance for embryonic development and cancer, we generated a mouse model deficient for SA1. Complete ablation of SA1 results in embryonic lethality, while heterozygous animals have shorter lifespan and earlier onset of tumourigenesis. SA1-null mouse embryonic fibroblasts show decreased proliferation and increased aneuploidy as a result of chromosome segregation defects. These defects are not caused by impaired centromeric cohesion, which depends on cohesin-SA2. Instead, they arise from defective telomere replication, which requires cohesion mediated specifically by cohesin-SA1. We propose a novel mechanism for aneuploidy generation that involves impaired telomere replication upon loss of cohesin-SA1, with clear implications in tumourigenesis. © 2012 European Molecular Biology Organization | All Rights Reserved. Source


Herranz D.,Tumor Suppression Group | Munoz-Martin M.,Tumor Suppression Group | Canamero M.,Comparative Pathology Unit | Mulero F.,Molecular Imaging Unit | And 3 more authors.
Nature Communications | Year: 2010

Genetic overexpression of protein deacetylase Sir2 increases longevity in a variety of lower organisms, and this has prompted interest in the effects of its closest mammalian homologue, Sirt1, on ageing and cancer. We have generated transgenic mice moderately overexpressing Sirt1 under its own regulatory elements (Sirt1-tg). Old Sirt1-tg mice present lower levels of DNA damage, decreased expression of the ageing-associated gene p16Ink4a, a better general health and fewer spontaneous carcinomas and sarcomas. These effects, however, were not sufficiently potent to affect longevity. To further extend these observations, we developed a metabolic syndrome-associated liver cancer model in which wild-type mice develop multiple carcinomas. Sirt1-tg mice show a reduced susceptibility to liver cancer and exhibit improved hepatic protection from both DNA damage and metabolic damage. Together, these results provide direct proof of the anti-ageing activity of Sirt1 in mammals and of its tumour suppression activity in ageing- and metabolic syndrome-associated cancer. Source

Discover hidden collaborations