Entity

Time filter

Source Type


Kelly H.A.,Victorian Infectious Diseases Reference Laboratory | Priest P.C.,University of Otago | Mercer G.N.,Australian National University | Dowse G.K.,Communicable Diseases Control Directorate
BMC Public Health | Year: 2011

Background: More than a year after an influenza pandemic was declared in June 2009, the World Health Organization declared the pandemic to be over. Evaluations of the pandemic response are beginning to appear in the public domain. Discussion. We argue that, despite the enormous effort made to control the pandemic, it is now time to acknowledge that many of the population-based public health interventions may not have been well considered. Prior to the pandemic, there was limited scientific evidence to support border control measures. In particular no border screening measures would have detected prodromal or asymptomatic infections, and asymptomatic infections with pandemic influenza were common. School closures, when they were partial or of short duration, would not have interrupted spread of the virus in school-aged children, the group with the highest rate of infection worldwide. In most countries where they were available, neuraminidase inhibitors were not distributed quickly enough to have had an effect at the population level, although they will have benefited individuals, and prophylaxis within closed communities will have been effective. A pandemic specific vaccine will have protected the people who received it, although in most countries only a small minority was vaccinated, and often a small minority of those most at risk. The pandemic vaccine was generally not available early enough to have influenced the shape of the first pandemic wave and it is likely that any future pandemic vaccine manufactured using current technology will also be available too late, at least in one hemisphere. Summary. Border screening, school closure, widespread anti-viral prophylaxis and a pandemic-specific vaccine were unlikely to have been effective during a pandemic which was less severe than anticipated in the pandemic plans of many countries. These were cornerstones of the population-based public health response. Similar responses would be even less likely to be effective in a more severe pandemic. We agree with the recommendation from the World Health Organisation that pandemic preparedness plans need review. © 2011 Kelly et al; licensee BioMed Central Ltd. Source


Eyre D.W.,University of Oxford | Eyre D.W.,National Health Research Institute | Tracey L.,Communicable Diseases Control Directorate | Elliott B.,University of Western Australia | And 19 more authors.
Eurosurveillance | Year: 2015

We describe an Australia-wide Clostridium difficile outbreak in 2011 and 2012 involving the previously uncommon ribotype 244. In Western Australia, 14 of 25 cases were community-associated, 11 were detected in patients younger than 65 years, 14 presented to emergency/outpatient departments, and 14 to nontertiary/ community hospitals. Using whole genome sequencing, we confirm ribotype 244 is from the same C. difficile clade as the epidemic ribotype 027. Like ribotype 027, it produces toxins A, B, and binary toxin, however it is fluoroquinolone-susceptible and thousands of single nucleotide variants distinct from ribotype 027. Fifteen outbreak isolates from across Australia were sequenced. Despite their geographic separation, all were genetically highly related without evidence of geographic clustering, consistent with a point source, for example affecting the national food chain. Comparison with reference laboratory strains revealed the outbreak clone shared a common ancestor with isolates from the United States and United Kingdom (UK). A strain obtained in the UK was phylogenetically related to our outbreak. Follow-up of that case revealed the patient had recently returned from Australia. Our data demonstrate new C. difficile strains are an on-going threat, with potential for rapid spread. Active surveillance is needed to identify and control emerging lineages. ©2015 Euro Surveill. All Rights Reserved. Source

Discover hidden collaborations