Entity

Time filter

Source Type

La Chaux-de-Fonds, Switzerland

Grant
Agency: Cordis | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-02-2014 | Award Amount: 48.05M | Year: 2015

The goal of the InForMed project is to establish an integrated pilot line for medical devices. The pilot line includes micro-fabrication, assembly and even the fabrication of smart catheters. The heart of this chain is the micro-fabrication and assembly facility of Philips Innovation Services, which will be qualified for small/medium-scale production of medical devices. The pilot facility will be open to other users for pilot production and product validation. It is the aim of the pilot line: to safeguard and consolidate Europes strong position in traditional medical diagnostic equipment, to enable emerging markets - especially in smart minimally invasive instruments and point-of-care diagnostic equipment - and to stimulate the development of entirely new markets, by providing an industrial micro-fabrication and assembly facility where new materials can be processed and assembled. The pilot line will be integrated in a complete innovation value chain from technology concept to high-volume production and system qualification. Protocols will be developed to ensure an efficient technology transfer between the different links in the value chain. Six challenging demonstrators products will be realized that address societal challenges in: Hospital and Heuristic Care and Home care and well-being, and demonstrate the trend towards Smart Health solutions.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP-2009-1.1-1 | Award Amount: 5.00M | Year: 2010

The main goal of the project PARYLENS is to develop the next generation optical devices, based on an innovative and reliable concept inspired by natural optical systems such as the human and the fly eyes. We propose the following devices to the European citizen and industry: 1) tuneable lenses 2) truly accommodative intraocular lenses 3) bistable flexible displays The development of those devices relies on recent advances in nanotechnology combined with the patented SOLID (Solid On Liquid deposition) process, which offers the possibility to grow a stable solid layer directly onto a liquid, such that the solid uniformly replicates and encapsulates the liquid template. When using the polymer Parylene as solid layer, the resulting interface is perfectly smooth and the liquid template remains unaffected, which is ideal for optical applications. Parylene is stable, biocompatible, highly transparent, and can be deposited in a one-step process also on liquids. PARYLENS proposes to develop low cost yet high quality, reliable smart devices. The actuation of the tuneable lenses will rely on Parylene-based electroactive polymers and liquid crystals. Tuneable lenses are expected to have an impact on the consumer electronics market (mobile phones, cameras, etc) in addition, the development of low actuation voltages tuneable lenses will profit to the biomedical devices market (artificial eyes, endoscopes, etc). The truly accommodative intraocular lenses will closely mimic the structure and shape of the crystalline lens of the human eye. They will also prevent inflammation and infections. The structure of microlens arrays will be used to develop flexible bistable liquid crystals displays. The consortium is well balanced (12 partners from 8 countries) and goes for full complementarity. It comprises 4 SMEs, 3 universities and 4 research centres. Together they will make this ambitious multidisciplinary project a reality.

Discover hidden collaborations