New York City, NY, United States
New York City, NY, United States

Columbia University in the City of New York, or simply Columbia University, is an American private Ivy League research university located in the Morningside Heights neighborhood of Upper Manhattan in New York City. It is the oldest institution of higher learning in the State of New York, the fifth oldest in the United States, and one of the country's nine Colonial Colleges founded before the American Revolution. Today the university operates Columbia Global Centers overseas in Amman, Beijing, Istanbul, Paris, Mumbai, Rio de Janeiro, Santiago and Nairobi.The university was founded in 1754 as King's College by royal charter of George II of Great Britain. After the American Revolutionary War, King's College briefly became a state entity, and was renamed Columbia College in 1784. The University now operates under a 1787 charter that places the institution under a private board of trustees, and in 1896 it was further renamed Columbia University. That same year, the university's campus was moved from Madison Avenue to its current location in Morningside Heights, where it occupies more than six city blocks, or 32 acres .The university encompasses twenty schools and is affiliated with numerous institutions, including Teachers College , Barnard College, and the Union Theological Seminary, with joint undergraduate programs available through the Jewish Theological Seminary of America as well as the Juilliard School.Columbia annually administers the Pulitzer Prize. 101 Nobel Prize laureates have been affiliated with the university as students, faculty, or staff, the second most of any institution in the world. Columbia is one of the fourteen founding members of the Association of American Universities, and was the first school in the United States to grant the M.D. degree. Notable alumni and former students of the university and its predecessor, King's College, include five Founding Fathers of the United States; nine Justices of the United States Supreme Court; 43 Nobel Prize laureates; 20 living billionaires; 28 Academy Award winners; and 29 heads of state, including three United States Presidents. Wikipedia.


Time filter

Source Type

Patent
Columbia University | Date: 2016-10-14

The disclosed subject matter includes optical tomographic systems for acquiring and displaying dynamic data representing changes in a target tissue sample to external provocation. For example, the disclosed devices, methods and systems may be used for quantifying dynamic vascular changes caused by imposed blood pressure changes for diagnosing peripheral artery disease.


Patent
Columbia University | Date: 2016-09-28

The present invention relates to a skin or surface disinfectant composition with broad spectrum antimicrobial activity comprising one or more essential oil (and/or one or more component thereof) and one or more fruit acid. The compositions of the invention may be used as non-toxic alternatives to conventional disinfectants or may be added to other antimicrobial agents to enhance their activity. The invention provides effective alternatives to harsher products which may be particularly useful in personal care and household products and where children and/or pet exposure may be a concern.


Patent
Columbia University and Sloan Kettering Institute For Cancer Research | Date: 2016-11-18

This invention provides a compound having the structure:


Patent
Columbia University | Date: 2016-08-26

Techniques to profile a disease or a disorder (e.g., a tumor) based on a protein activity signature are disclosed herein. An example method can include measuring quantitatively protein activity of a plurality of master regulator proteins in a sample from a disease or disorder; and profiling the tumor from the quantitative protein activity of the master regulator proteins. Also disclosed are methods of identifying a compound or compounds that treats diseases or disorders (e.g., inhibit tumor cell growth).


This invention provides a nucleotide analogue comprising (i) a base selected from the group consisting of adenine, guanine, cytosine, thymine and uracil, (ii) a deoxyribose, (iii) an allyl moiety bound to the 3-oxygen of the deoxyribose and (iv) a fluorophore bound to the base via an allyl linker, and methods of nucleic acid sequencing employing the nucleotide analogue.


Patent
Columbia University | Date: 2016-09-19

A microdevice for isolating and amplifying aptamers includes a selection microchamber and an amplification microchamber. The selection microchamber can include a plurality of cultured cells immobilized therein. A first microchannel connecting the selection microchamber to the amplification microchamber can be configured to hydrodynamically transfer oligomers from the selection microchamber to the amplification chamber. A second microchannel connecting the selection microchamber to the amplification microchamber can be configured to hydrodynamically transfer oligomers from the amplification chamber to the selection chamber.


Patent
Columbia University | Date: 2016-12-15

This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the OH group at the 3-position of the deoxyribose.


Patent
Columbia University | Date: 2016-12-15

This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the OH group at the 3-position of the deoxyribose.


Hillman E.M.C.,Columbia University
Annual Review of Neuroscience | Year: 2014

Functional magnetic resonance imaging (fMRI) provides a unique view of the working human mind. The blood-oxygen-level-dependent (BOLD) signal, detected in fMRI, reflects changes in deoxyhemoglobin driven by localized changes in brain blood flow and blood oxygenation, which are coupled to underlying neuronal activity by a process termed neurovascular coupling. Over the past 10 years, a range of cellular mechanisms, including astrocytes, pericytes, and interneurons, have been proposed to play a role in functional neurovascular coupling. However, the field remains conflicted over the relative importance of each process, while key spatiotemporal features of BOLD response remain unexplained. Here, we review current candidate neurovascular coupling mechanisms and propose that previously overlooked involvement of the vascular endothelium may provide a more complete picture of how blood flow is controlled in the brain. We also explore the possibility and consequences of conditions in which neurovascular coupling may be altered, including during postnatal development, pathological states, and aging, noting relevance to both stimulus-evoked and resting-state fMRI studies. © Copyright ©2014 by Annual Reviews. All rights reserved.


Yuste R.,Columbia University
Nature Reviews Neuroscience | Year: 2015

For over a century, the neuron doctrine - which states that the neuron is the structural and functional unit of the nervous system - has provided a conceptual foundation for neuroscience. This viewpoint reflects its origins in a time when the use of single-neuron anatomical and physiological techniques was prominent. However, newer multineuronal recording methods have revealed that ensembles of neurons, rather than individual cells, can form physiological units and generate emergent functional properties and states. As a new paradigm for neuroscience, neural network models have the potential to incorporate knowledge acquired with single-neuron approaches to help us understand how emergent functional states generate behaviour, cognition and mental disease. © 2015 Macmillan Publishers Limited. All rights reserved.

Loading Columbia University collaborators
Loading Columbia University collaborators