Time filter

Source Type

Puerto Colombia, Colombia

Cordy P.,University of British Columbia | Veiga M.M.,University of British Columbia | Salih I.,University of British Columbia | Al-Saadi S.,University of British Columbia | And 5 more authors.
Science of the Total Environment

The artisanal gold mining sector in Colombia has 200,000 miners officially producing 30tonnes Au/a. In the Northeast of the Department of Antioquia, there are 17 mining towns and between 15,000 and 30,000 artisanal gold miners. Guerrillas and paramilitary activities in the rural areas of Antioquia pushed miners to bring their gold ores to the towns to be processed in Processing Centers or entables. These Centers operate in the urban areas amalgamating the whole ore, i.e. without previous concentration, and later burn gold amalgam without any filtering/condensing system. Based on mercury mass balance in 15 entables, 50% of the mercury added to small ball mills (cocos) is lost: 46% with tailings and 4% when amalgam is burned. In just 5 cities of Antioquia, with a total of 150,000 inhabitants: Segovia, Remedios, Zaragoza, El Bagre, and Nechí, there are 323 entables producing 10-20tonnes Au/a. Considering the average levels of mercury consumption estimated by mass balance and interviews of entables owners, the mercury consumed (and lost) in these 5 municipalities must be around 93tonnes/a. Urban air mercury levels range from 300ng Hg/m 3 (background) to 1million ng Hg/m 3 (inside gold shops) with 10,000ng Hg/m 3 being common in residential areas. The WHO limit for public exposure is 1000ng/m 3. The total mercury release/emissions to the Colombian environment can be as high as 150tonnes/a giving this country the shameful first position as the world's largest mercury polluter per capita from artisanal gold mining. One necessary government intervention is to cut the supply of mercury to the entables. In 2009, eleven companies in Colombia legally imported 130tonnes of metallic mercury, much of it flowing to artisanal gold mines. Entables must be removed from urban centers and technical assistance is badly needed to improve their technology and reduce emissions. © 2011 Elsevier B.V. Source

Cordy P.,University of British Columbia | Veiga M.,University of British Columbia | Crawford B.,University of British Columbia | Garcia O.,Colombia Mercury Project | And 4 more authors.
Environmental Research

Artisanal miners sell their gold to shops that are usually located in the urban core, where the mercury-gold amalgam is burned to evaporate the mercury that was added during ore processing. People living and working near these gold shops are exposed to intermittent and extreme concentrations of mercury vapour. In the urban centres of Segovia, Colombia, and Andacollo, Chile, the average concentrations measured by mobile mercury vapour analyzer transects taken repeatedly over several weeks were 1.26 and 0.338μgm-3, respectively. By World Health Organization standards, these towns are exposed to significant health hazard, and globally, the millions of miners, as well as non-miners who live near gold shops, are at serious risk of neurological and renal deficits. Measurements taken in Suriname, Ecuador and Peru reveal this to be a widespread phenomenon with unique regional variations and myriad attempts at remediation. Maps of average mercury concentrations show the spatial distribution of the hazard in relation to residential buildings and schools. Measurements from towers show the temporal variability of mercury concentrations, and suggest that large quantities of mercury are available for long-range atmospheric transport. Mercury mapping in Segovia in 2011 suggest a 10% reduction in airborne mercury concentrations over 2010, despite a 30% increase in gold production. This is attributable to the adoption of retorts by miners and regulations banning new processing centres to the rural periphery. This is the first full description of artisanal mining gold shop practices and of the character, quantity, and remediation of mercury emissions within urban mining centres. © 2013 Elsevier Inc. Source

Discover hidden collaborations