Time filter

Source Type

Sydney, Australia

Kohler F.,Western Australia | Kohler F.,College St
Malacologia | Year: 2011

The Western Australian Kimberley region harbours a diverse fauna of camaenid land snails characterised by marked patterns of narrow range endemism. A recent survey of previously poorly known areas along the Kimberley coast has resulted in the discovery of a number of further, yet undeschbed camaenid taxa. One of these, the genus Australocosmica, is newly described herein based on comparative studies of genital anatomy, shell and radular morphology, and analyses of partial sequences of the mitochondrial marker 16S rRNA. Australocosmica is characterised by a broadly conical to semi-globose shell with moderately elevated spire, well-rounded, convex whorls that are separated by a deeply incised suture, and a sculpture of dense, regularly spaced axial ribs. The most distinguishing feature of the inner penial anatomy is the presence of a furrowed, collar-like vergic papillum forming the entrance of the vas deferens into the lumen of the penial chamber. Three new species, Australocosmia augustae, A. sanctumpatriciusae, and A. vulcanice, are described based mainly on differences in penial anatomy. All species are well differentiated by uncorrected pair-wise p-distances of 15% to 20% in the 16S rRNA gene. Similar to most camaenids in the Kimberley region, species of Australocosmica are narrow-range endemics being restricted to single islands, sometimes including the immediately adjacent mainland coast. Source

Pyke G.H.,College St | Ehrlich P.R.,Stanford University
Biological Reviews | Year: 2010

Housed worldwide, mostly in museums and herbaria, is a vast collection of biological specimens developed over centuries. These biological collections, and associated taxonomic and systematic research, have received considerable long-term public support. The work remaining in systematics has been expanding as the estimated total number of species of organisms on Earth has risen over recent decades, as have estimated numbers of undescribed species. Despite this increasing task, support for taxonomic and systematic research, and biological collections upon which such research is based, has declined over the last 30-40 years, while other areas of biological research have grown considerably, especially those that focus on environmental issues. Reflecting increases in research that deals with ecological questions (e.g. what determines species distribution and abundance) or environmental issues (e.g. toxic pollution), the level of research attempting to use biological collections in museums or herbaria in an ecological/environmental context has risen dramatically during about the last 20 years. The perceived relevance of biological collections, and hence the support they receive, should be enhanced if this trend continues and they are used prominently regarding such environmental issues as anthropogenic loss of biodiversity and associated ecosystem function, global climate change, and decay of the epidemiological environment. It is unclear, however, how best to use biological collections in the context of such ecological/environmental issues or how best to manage collections to facilitate such use. We demonstrate considerable and increasingly realized potential for research based on biological collections to contribute to ecological/environmental understanding. However, because biological collections were not originally intended for use regarding such issues and have inherent biases and limitations, they are proving more useful in some contexts than in others. Biological collections have, for example, been particularly useful as sources of information regarding variation in attributes of individuals (e.g. morphology, chemical composition) in relation to environmental variables, and provided important information in relation to species' distributions, but less useful in the contexts of habitat associations and population sizes. Changes to policies, strategies and procedures associated with biological collections could mitigate these biases and limitations, and hence make such collections more useful in the context of ecological/ environmental issues. Haphazard and opportunistic collecting could be replaced with strategies for adding to existing collections that prioritize projects that use biological collections and include, besides taxonomy and systematics, a focus on significant environmental/ecological issues. Other potential changes include increased recording of the nature and extent of collecting effort and information associated with each specimen such as nearby habitat and other individuals observed but not collected. Such changes have begun to occur within some institutions. Institutions that house biological collections should, we think, pursue a mission of 'understanding the life of the planet to inform its stewardship' (Krishtalka & Humphrey, 2000), as such a mission would facilitate increased use of biological collections in an ecological/ environmental context and hence lead to increased appreciation, encouragement and support from the public for these collections, their associated research, and the institutions that house them. © 2009 Cambridge Philosophical Society. Source

Amphiboloidea is a small but widespread group of snails found exclusively, and often abundantly, in mudflat and associated salt marsh or mangrove habitat. This study uses molecular data from three loci (COI, 16S and 28S) to infer phylogenetic relationships in Amphiboloidea and examine its position in Euthyneura. All but two of the named extant species of Amphiboloidea and additional undescribed taxa from across Southeast Asia and the Arabian Gulf were sampled. In contrast to the current morphology-based classification dividing Amphiboloidea into three families, analysis of molecular data supports revision of the classification to comprise two families. Maningrididae is a monotypic family basal to Amphibolidae, which is revised to comprise three subfamilies: Amphibolinae, Phallomedusinae and Salinatorinae. Sequence divergence between Asian populations of Naranjia is relatively large and possibly indicative of species complexes divergent across the Strait of Malacca. Salinator rosacea and Salinator burmana do not cluster with other Salinator species, and require generic reassignment. In addition, sequences were obtained from an undescribed species of Lactiforis from the Malay Peninsula. Reconstruction of ancestral distributions indicates a plesiomorphic distribution and centre of origin in Australasia, with two genera subsequently diversifying throughout Asia. Increasing the sampling density of amphiboloid taxa in a phylogenetic analysis of Euthyneura did not resolve the identity of the sister taxon to Amphibolidae, but confirmed its inclusion in Pulmonata/Panpulmonata. © 2011 Elsevier Inc. Source

Frankham R.,Macquarie University | Frankham R.,College St
Molecular Ecology | Year: 2015

Abstract Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ∼ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta-analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts. See also the Perspective by Waller © 2015 John Wiley & Sons Ltd. Source

Leis J.M.,College St
Ichthyological Research | Year: 2010

The development of behaviours that are relevant to larval dispersal of marine, demersal fishes is poorly understood. This review focuses on recent work that attempts to quantify the development of swimming, orientation, vertical distribution and sensory abilities. These behaviours are developed enough to influence dispersal outcomes during most of the pelagic larval stage. Larvae swim in the ocean at speeds similar to the currents found in many locations and at 3-15 body lengths per second (BL s-1), although, based on laboratory measurements, species from cold environments swim slower than those from warm environments. At least in warm-water species, larvae swim in an inertial hydrodynamic environment for most of their pelagic period. Unfed swimming endurance is >10 km from about 8-10 mm, and reaches more than 50 km before settlement in several species. Larval fishes are efficient swimmers. In most species, a large majority of larvae have orientated swimming in the ocean, but the precision of orientation does not improve with growth. Swimming direction of the larvae frequently changes ontogenetically. Vertical distribution changes ontogenetically in most species, and both ontogenetic ascents and descents are found. Development of schooling is poorly understood, but it may influence speed, orientation and vertical distribution. Sensory abilities (hearing, olfaction, vision) form early, are well developed and are able to detect cues relevant to orientation for most of the pelagic larval stage. All this indicates that the passive portion of the pelagic larval duration will be short, at least in most warm-water species, and that behaviour must be taken into account when considering dispersal, and in particular in dispersal models. Although quantitative information on the ontogeny of some behaviours is available for a relatively small number of species, more research in this field is required, especially on species from colder waters. © 2010 The Ichthyological Society of Japan. Source

Discover hidden collaborations