Entity

Time filter

Source Type


Loth R.,University of Leipzig | Loth R.,Collaborative Research Center Transregio 67 | Loth T.,University of Leipzig | Loth T.,Collaborative Research Center Transregio 67 | And 8 more authors.
Acta Biomaterialia | Year: 2015

Biocompatible material platforms with adjustable properties and option for chemical modification are warranted for site-specific biomedical applications. To this end, three-armed biodegradable macromers of well-defined chemical characteristics were prepared from trivalent alcohols with different degrees of ethoxylation and different lengths of oligoester domains. A platform of 15 different macromers was established. The macromers were designed to exhibit different hydrophilicities and molecular weights and contained various types of oligoesters such as d,l-lactide, l-lactide and ε-caprolactone. Macromers chemical composition was determined and molecular weights ranged from 900 to 3000 Da. Thermally induced cross-linking of methacrylated macromers was monitored by oscillation rheology. A novel variant of the solid lipid templating technique was established to fabricate macroporous tissue engineering scaffolds from these macromers. Scaffold properties were thoroughly investigated regarding mechanical properties, compositional analysis including methacrylic double bond conversion, microstructure and porosity. Material properties could be controlled by macromer chemistry. By variation of the fabrication procedure and processing parameters scaffold porosity was increased up to 88%. Basic cytocompatibility was assessed including indirect and direct contact methods. The established macromers hold promise for various biomedical purposes. Statement of Significance Specific biomedical applications require tailored biomaterials with defined properties. We established a macromer platform for preparation of tissue engineering scaffolds with adjustable chemical and mechanical characteristics. Macromers were composed of trivalent core alcohols with different degrees of ethoxylation to which biodegradable domains - lactide or ε-caprolactone - were oligomerized before final methacrylation. The solid lipid templating technique was adapted to fabricate macroporous scaffolds with controlled pore structure and porosity from the developed macromers, which can also be processed by solid freeform fabrication techniques. The material platform relies on clinically established chemistries of the biodegradable domains and the macromer concept enables the fabrication of networks in which cross-polymerization kinetics, mechanical properties and surface hydrophobicity is predefined by macromer chemistry. Cytocompatibility was confirmed by indirect and direct cell contact experiments. © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Loth T.,University of Leipzig | Loth T.,Collaborative Research Center Transregio 67 | Hotzel R.,University of Leipzig | Hotzel R.,Collaborative Research Center Transregio 67 | And 8 more authors.
Biomacromolecules | Year: 2014

Chemically cross-linked gelatin hydrogels are versatile cell-adhesive hydrogel materials that have been established for a variety of biomedical applications. The most prominent cross-linker is glutaraldehyde, which, however, has been described to cause compatibility problems and loss of microscopic but relevant structural features. A recently developed oligomeric cross-linker that contains anhydride functionalities was evaluated as cross-linker for the fabrication of gelatin-based hydrogels and microparticles. In a fast curing reaction, hydrogels composed of gelatin and oligomeric cross-linker were fabricated with good conversion over a wide concentration range of constituents and with cross-linkers of different anhydride contents. Hydrogel properties, such as dry weight and mechanics, could be controlled by hydrogel composition and rheological properties correlated to elastic moduli from 1 to 10 kPa. The gels were shown to be cytocompatible and promoted cell adhesion. In soft formulations, cells migrated into the hydrogel bulk. Gelatin microparticles prepared by a standard water-in-oil emulsion technique were also treated with the novel oligomers, and cross-linking degrees matching those obtained with glutaraldehyde were obtained. At the same time, fewer interparticular cross-links were observed. Fluorescein-derivatized cross-linkers yielded labeled microparticles in a concentration-dependent manner. The oligomeric cross-linkers are presented as an efficient and possibly more functional and compatible alternative to glutaraldehyde. The engineered hydrogel materials hold potential for various biomedical applications. © 2014 American Chemical Society.

Discover hidden collaborations