Time filter

Source Type

Santa Cruz, CA, United States

Pinnix W.D.,U.S. Fish and Wildlife Service | Nelson P.A.,Collaborative Fisheries Research West | Stutzer G.,U.S. Fish and Wildlife Service | Wright K.A.,U.S. Fish and Wildlife Service
Environmental Biology of Fishes | Year: 2013

We monitored the movement of coho salmon (Oncorhynchus kisutch) smolts with acoustic transmitters from freshwater, through the freshwater/estuary ecotone, through the estuary, and to ocean entry to determine residence time and habitat use in Humboldt Bay, California. Tagged fish were monitored with a fixed receiver network and mobile tracking conducted from a boat. Coho salmon observed during the two-year study resided in Humboldt Bay beginning at least as early as late April and resided through the beginning of July. Coho salmon smolts spent more time in the freshwater/estuary ecotone compared to the lower estuary and spent an average of 10-12 days migrating to Humboldt Bay. Coho salmon smolts resided in Humboldt Bay, a marine embayment, for an average of 15-22 days prior to leaving the bay for the open ocean. Coho salmon smolts, as observed from mobile tracking, used deep channels and channel margins more often than floating eelgrass mats, pilings, and docks. In addition, tagged fish were more often detected in the central portions of Humboldt Bay characterized by deep channels with narrow intertidal margins. There were fewer detections in other portions of the bay characterized by shallow channels with large intertidal mudflats and eelgrass meadows. Relatively short transmitter life (70 days) precluded determining the latest date of coho salmon smolt residency in Humboldt Bay. In addition, tag size limited use to the largest emigrating smolts and may not represent the behaviors of the smaller-sized smolts which were more abundant. © 2012 Springer Science+Business Media B.V. (outside the USA).

Zajanc D.,H. T. Harvey and Associates | Kramer S.H.,H. T. Harvey and Associates | Nur N.,PRBO Conservation Science | Nelson P.A.,Collaborative Fisheries Research West
Environmental Biology of Fishes | Year: 2013

Using acoustic telemetry methods on large numbers of tagged fish, we studied how the holding behavior of Chinook salmon and steelhead smolts could be related to habitat features and spatial and temporal variables on a highly altered section of the Sacramento River. We viewed downstream migration as a process in which fish transition between moving and holding states, and used a binomial and negative binomial Generalized Linear Model to analyze two aspects of holding: 1) probability of holding, and 2) holding time. For Chinook salmon, the probability of holding increased as wood size and fine substrates increased; holding time increased as overhead shade increased. For steelhead, holding behavior was only weakly related to habitat variables, in contrast to the strong relationships with spatial and temporal variables. For both species, the probability of holding increased when distance from the release location decreased and instream flows decreased. We found support for three main findings: 1) spatial and temporal factors have considerably greater influence on Chinook salmon and steelhead smolt holding behavior than nearshore habitat features; 2) holding behaviors of Chinook salmon smolts are influenced more strongly by habitat features than steelhead smolts; and 3) incorporation of habitat features such as large woody material and overhead shade should be considered when conducting nearshore bank rehabilitation projects to increase cover from predators and provide velocity refuge, improving holding habitat during downstream migration. © 2012 Springer Science+Business Media B.V.

Discover hidden collaborations