Entity

Time filter

Source Type

Cambridge, United Kingdom

Zhang J.,University of Birmingham | Zhang J.,Cognition and Brain science Unit | Kourtzi Z.,University of Birmingham
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes. Source


Fedorenko E.,Massachusetts Institute of Technology | Duncan J.,Cognition and Brain science Unit | Kanwisher N.,Massachusetts Institute of Technology
Current Biology | Year: 2012

In 1861, Paul Broca stood up before the Anthropological Society of Paris and announced that the left frontal lobe was the seat of speech. Ever since, Broca's eponymous brain region has served as a primary battleground for one of the central debates in the science of the mind and brain: Is human cognition produced by highly specialized brain regions, each conducting a specific mental process, or instead by more general-purpose brain mechanisms, each broadly engaged in a wide range of cognitive tasks? For Broca's area, the debate focuses on specialization for language versus domain-general functions such as hierarchical structure building (e.g., [1, 2]), aspects of action processing (e.g., [3]), working memory (e.g., [4]), or cognitive control (e.g., [5-7]). Here, using single-subject fMRI, we find that both ideas are right: Broca's area contains two sets of subregions lying side by side, one quite specifically engaged in language processing, surrounded by another that is broadly engaged across a wide variety of tasks and content domains. © 2012 Elsevier Ltd. Source


Monti M.M.,University of California at Los Angeles | Rosenberg M.,University of California at Los Angeles | Finoia P.,Cognition and Brain science Unit | Finoia P.,University of Cambridge | And 3 more authors.
Neurology | Year: 2014

Objective: We employed functional MRI (fMRI) to assess whether (1) patients with disorders of consciousness (DOC) retain the ability to willfully engage in top-down processing and (2) what neurophysiologic factors distinguish patients who can demonstrate this ability from patients who cannot. Methods: Sixteen volunteers, 8 patients in vegetative state (VS), 16 minimally conscious patients (MCS), and 4 exit from MCS (eMCS) patients were enrolled in a prospective cross-sectional fMRI study. Participants performed a target detection task in which they counted the number of times a (changing) target word was presented amidst a set of distractors. Results: Three of 8 patients diagnosed as being in a VS exhibited significant activations in response to the task, thereby demonstrating a state of consciousness. Differential activations across tasks were also observed in 6 MCS patients and 1 eMCS patient. A psycho-physiologic interaction analysis revealed that the main factor distinguishing patients who responded to the task from those who did not was a greater connectivity between the anterior section of thalamus and prefrontal cortex. Conclusions: In our sample of patients, the dissociation between overt behavior observable in clinical assessments and residual cognitive faculties is prevalent among DOC patients (37%). A substantial number of patients, including some diagnosed with VS, can demonstrate willful engagement in top-down cognition. While neuroimaging data are not the same as observable behavior, this suggests that the mental status of some VS patients exceeds what can be appreciated clinically. Furthermore, thalamo-frontal circuits might be crucial to sustaining top-down functions. © 2014 American Academy of Neurology. Source


Reilly J.,University of Florida | Rodriguez A.D.,University of Florida | Peelle J.E.,Cognition and Brain science Unit | Grossman M.,University of Pennsylvania
Cortex | Year: 2011

Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. © 2010 Elsevier. Source


Egorova N.,Cognition and Brain science Unit | Pulvermuller F.,Free University of Berlin | Shtyrov Y.,Cognition and Brain science Unit | Shtyrov Y.,University of Aarhus | Shtyrov Y.,Lund University
Brain Topography | Year: 2014

The neurobiological basis and temporal dynamics of communicative language processing pose important yet unresolved questions. It has previously been suggested that comprehension of the communicative function of an utterance, i.e. the so-called speech act, is supported by an ensemble of neural networks, comprising lexicosemantic, action and mirror neuron as well as theory of mind circuits, all activated in concert. It has also been demonstrated that recognition of the speech act type occurs extremely rapidly. These findings however, were obtained in experiments with insufficient spatio-temporal resolution, thus possibly concealing important facets of the neural dynamics of the speech act comprehension process. Here, we used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts. The results show that different communicative actions are underpinned by a dynamic neural network, which differentiates between speech act types very early after the speech act onset. Within 50-90 ms, Requests engaged mirror-neuron action-comprehension systems in sensorimotor cortex, possibly for processing action knowledge and intentions. Still, within the first 200 ms of stimulus onset (100-150 ms), Naming activated brain areas involved in referential semantic retrieval. Subsequently (200-300 ms), theory of mind and mentalising circuits were activated in medial prefrontal and temporo-parietal areas, possibly indexing processing of intentions and assumptions of both communication partners. This cascade of stages of processing information about actions and intentions, referential semantics, and theory of mind may underlie dynamic and interactive speech act comprehension. © The Author(s) 2013. Source

Discover hidden collaborations