Chipinge, Zimbabwe
Chipinge, Zimbabwe

Time filter

Source Type

Chemura A.,Chinhoyi University of Technology | Kutywayo D.,Agricultural Research Center | Chidoko P.,Coffee Research Institute | Mahoya C.,Coffee Research Institute
Regional Environmental Change | Year: 2015

Coffee is an important commodity crop in Zimbabwe and many other African countries in terms of its contribution to local and national economies. Coffee production in terms of productivity and quality face severe constraints due to climate change. A study was therefore carried out to understand and quantify the potential impact of climate change on the coffee sector in Zimbabwe using a bioclimatic modelling approach. Current climatically suitable areas were identified and compared with those areas identified to be climatically suitable under projected 2050 climatic conditions. The projected climatic conditions were obtained from climate predictions of two models: CCSM4 model and HadGEM2 model. Coffee production was found to be mostly sensitive to precipitation factors as these were the most important in determining climatic suitability of coffee production in Zimbabwe. The modelling showed that current coffee suitability varies spatially between the four coffee producing districts in Zimbabwe. Chipinge district has the largest area climatically suitable for coffee production followed by Chimanimani district with Mutare district having the smallest. The modelling predicted that there will be a spatial and quantitative change in climatic suitability for coffee production in Zimbabwe by 2050. The greatest changes are projected for Mutare district where over three quarters according to the CCSM4 model and the entire district according to the HadGEM2 model will turn marginal for coffee production. A westward shift in climatic suitability of coffee was observed for Chipinge and Chimanimani district. The models predicted a loss of between 30,000 ha (CCSM4) and 50,000 ha (HadGEM2) in areas climatically suitable for coffee production by 2050 in Zimbabwe. These changes are likely to be driven by changes in the distribution of precipitation received in the coffee areas. The study presents possible adaptation measures that can be adopted by the coffee sector in Zimbabwe and the region to maintain coffee productivity under a changing climate. © 2015 Springer-Verlag Berlin Heidelberg


Kutywayo D.,Coffee Research Institute | Chemura A.,Chinhoyi University of Technology | Kusena W.,Midlands State University | Chidoko P.,Coffee Research Institute | Mahoya C.,Coffee Research Institute
PLoS ONE | Year: 2013

The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms. © 2013 Kutywayo et al.


Musoli P.C.,Coffee Research Institute | Cilas C.,CIRAD - Agricultural Research for Development | Pot D.,CIRAD - Agricultural Research for Development | Nabaggala A.,Coffee Research Institute | And 5 more authors.
Tree Genetics and Genomes | Year: 2013

Knowledge on heritability is essential for selecting varieties resistant against coffee wilt disease caused by Fusarium xylarioides, which is currently devastating coffee in East and Central Africa. Variability of the resistance against coffee wilt disease in Coffea canephora and its inheritance were investigated in three experiments corresponding to a clonal trial involving 20 clones, a 10-parent partial diallel progeny, and a half-sib progeny test. There were significant quantitative genetic variations among the clones and progenies, suggesting polygenic control of the resistance. Around 50-65 % tree mortality was the optimal disease level for calculating heritability and genetic gains. General and specific combining abilities calculated within the optimal disease range for partial diallel analysis were significant. Broad-sense heritability for the same analysis and same disease range was moderate (0. 329), and corresponding narrow-sense heritability was low (0. 112). Broad-sense heritability from clones in the field at the same disease range was also moderate (0. 333). Narrow-sense heritability from regression of half-sib progeny means onto parent means in the field and screen house was 0. 183 and 0. 369, respectively. Selecting tolerant clones for improvement against the disease is possible, and genetic gains are possible by using tolerant parents in breeding programs. © 2012 Springer-Verlag.


Kahia J.,World Agroforestry Center | Kirika M.,Radboud University Nijmegen | Lubabali H.,Coffee Research Institute | Mantell S.,Nakhlatec International Development Advisors
HortScience | Year: 2016

Breeding work carried out during the period 1971–85 by the Coffee Research Institute, Ruiru, Kenya resulted in the release of a new improved hybrid Coffea arabica named Ruiru 11. The cultivar combines resistance to coffee berry disease (CBD) and leaf rust, with high yield and good cup quality attributes. The propagation by F1 hybrid seeds production, cuttings, and tip grafting do not produce enough planting materials. There was a need to explore alternative methods and tissue culture offers potential options. The objective of the study was to evaluate the effect of explant sources and cytokinins on induction and regeneration of somatic embryos. Eight different explants were cultured on half-strength Murashige and Skoog (MS) medium supplemented with 10 μM benzylaminopurine (BAP). The effect of kinetin, N6-(2-isopentyl) adenine (2iP) evaluated at (0, 0.5, 5, or 25 μM) or thidiazuron (TDZ) (0, 0.5, 1.0, or 5 μM) added in separate experiments was also evaluated. The percentage of embryogenic cultures and the numbers of embryos per explant were determined after 3 months’ culture. The explant type had a significant effect (P > 0.05) on the induction of somatic embryos. Explants from in vitro-germinated seedlings produced the highest embryogenic cultures (90%) and the highest mean number of embryos (19.36) per explant. Cytokinins strongly enhanced induction and regeneration of somatic embryos. TDZ at 1 μM produced the highest embryogenic cultures (100%) and the highest mean number of embryos (24.2). The embryos were germinated on half-strength MS medium without any hormones. A high (98%) survival rate of the regenerated plantlets was recorded over all the treatments in the greenhouse. This is the first report on induction of high-frequency direct somatic embryos from coffee juvenile tissues. This is of great significance in tissue culture and indeedmolecular biology manipulations because it allows regeneration of coffee from several explants. © 2016, American Society for Horticultural Science. All Rights Reserved.


The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms.

Loading Coffee Research Institute collaborators
Loading Coffee Research Institute collaborators