Time filter

Source Type

Roude D.,Rennes Institute of Physics | Recher G.,Equipe SCANING | Recher G.,Institute Of Neurobiologie Alfred Fessard | Bellanger J.-J.,CNRS Signal and Image Processing Laboratory | And 3 more authors.
Biophysical Journal | Year: 2011

A theoretical far-field second harmonic generation (SHG) imaging radiation pattern is calculated for muscular myosin taking into account both Gouy effect and light diffraction under high focusing excitation. Theoretical analysis, in agreement with experimental results obtained on healthy Xenopus muscles, shows that the increase on intensity at the middle of the sarcomeric SHG intensity pattern is generated by an off-axis constructive interference related to the specific antipolar distribution of myosin molecules within the sarcomere. The best fit of the experimental sarcomeric SHG intensity pattern was obtained with an estimated size of antiparallel, intrathick filaments' packing-width of 115 ± 25 nm localized at the M-band. During proteolysis, experimental sarcomeric SHG intensity pattern exhibits decrease on intensity at the center of the sarcomere. An effective intra- and interthick filaments centrosymmetry of 320 ± 25 nm, in agreement with ultrastructural disorganization observed at the electron microscopy level, was necessary to fit the experimental sarcomeric SHG intensity pattern. Our results show that sarcomeric SHG intensity pattern is very sensitive to misalignment of thick filaments and highlights the potential usefulness of SHG microscopy to diagnose proteolysis-induced muscular disorders. © 2011 Biophysical Society. Source

Rouede D.,Rennes Institute of Physics | Bellanger J.-J.,CNRS Signal and Image Processing Laboratory | Bomo J.,Institut Universitaire de France | Baffet G.,Institut Universitaire de France | Tiaho F.,Institut Universitaire de France
Optics Express | Year: 2015

A linear least square (LLS) method is proposed to process polarization dependent SHG intensity analysis at pixel-resolution level in order to provide an analytic solution of nonlinear susceptibility χ(2) coefficients and of fibril orientation. This model is applicable to fibrils with identical orientation in the excitation volume. It has been validated on type I collagen fibrils from cell-free gel, tendon and extracellular matrix of F1 biliary epithelial cells. LLS is fast (a few hundred milliseconds for a 512 × 512 pixel image) and very easy to perform for non-expert in numerical signal processing. Theoretical simulation highlights the importance of signal to noise ratio for accurate determination of nonlinear susceptibility χ(2) coefficients. The results also suggest that, in addition to the peptide group, a second molecular nonlinear optical hyperpolarizability βcontributes to the SHG signal. Finally from fibril orientation analysis, results show that F1 cells remodel extracellular matrix collagen fibrils by changing fibril orientation, which might have important physiological function in cell migration and communication. © 2015 Optical Society of America. Source

Garnier C.,CNRS Signal and Image Processing Laboratory
Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference | Year: 2011

Prostate segmentation in MRI may be difficult at the interface with the bladder where the contrast is poor. Coupled-models that segment simultaneously both organs with non-overlapping constraints offer a good solution. As a pre-segmentation of the structures of interest is required, we propose in this paper a fast deformable model to segment the bladder. The combination of inflation and internal forces, locally adapted according to the gray levels, allow to deform the mesh toward the boundaries while overcoming the leakage issues that can occur at weak edges. The algorithm, evaluated on 33 MRI volumes from 5 different devices, has shown good performance providing a smooth and accurate surface. Source

Gigout S.,French Institute of Health and Medical Research | Louvel J.,French Institute of Health and Medical Research | Rinaldi D.,French Institute of Health and Medical Research | Martin B.,French Institute of Health and Medical Research | And 2 more authors.
Brain Research | Year: 2013

Electroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy. These mice show spontaneous SWD, and their features can be compared to that of BR/Orl mice, which are free of SWD. In addition, since gap junctions may modulate the efficacy of these connections, their implications in pharmacologically-induced epileptiform discharges were studied in the same slices. The thalamus and neocortex were independently stimulated and the electrically-evoked responses in both structures were recorded from the same slice. The synaptic efficacy of thalamocortical and corticothalamic connections were assessed by measuring the dynamic range of synaptic field potential changes in response to increasing stimulation strengths. The connection efficacy was weaker in epileptic mice however, this decrease in efficacy was more pronounced in thalamocortical afferents, thus introducing an imbalance in the reciprocal connections between the cortex and thalamus. However, short-term facilitation of the thalamocortical responses were increased in epileptic mice compared to non-epileptic animals. These features may favor occurrence of rhythmical activities in thalamocortical networks. In addition, carbenoxolone (a gap junction blocker) decreased the cumulative duration of 4-aminopyridine-induced ictal-like activities, with a slower time course in epileptic mice. However, the 4-aminopyridine-induced GABA-dependent negative potentials, which appeared to trigger the ictal-like activities, remained. Our results show that the balance of the reciprocal connections between the thalamus and cortex is altered in favor of the corticothalamic connections in epileptic mice, and suggest that gap junctions mediate a stronger cortical synchronization in this strain. © 2013 Elsevier B.V. Source

Rouede D.,Rennes Institute of Physics | Bellanger J.-J.,CNRS Signal and Image Processing Laboratory | Schaub E.,Rennes Institute of Physics | Recher G.,French National Center for Scientific Research | Tiaho F.,University of Rennes 1
Biophysical Journal | Year: 2013

SHG angular intensity pattern (SHG-AIP) of healthy and proteolysed muscle tissues are simulated and imaged here for the first time to our knowledge. The role of the spatial distribution of second-order nonlinear emitters on SHG-AIP is highlighted. SHG-AIP with two symmetrical spots is found to be a signature of healthy muscle whereas SHG-AIP with one centered spot in pathological mdx muscle is found to be a signature of myofibrillar disorder. We also show that SHG-AIP provides information on the three-dimensional structural organization of myofibrils in physiological and proteolysed muscle. Our results open an avenue for future studies aimed at unraveling more complex physiological and pathological fibrillar tissues organization. © 2013 Biophysical Society. Source

Discover hidden collaborations