Entity

Time filter

Source Type


Ozerov A.,French Institute for Research in Computer Science and Automation | Vincent E.,French Institute for Research in Computer Science and Automation | Bimbot F.,CNRS Research on Informatics and Random Systems
IEEE Transactions on Audio, Speech and Language Processing | Year: 2012

Most audio source separation methods are developed for a particular scenario characterized by the number of sources and channels and the characteristics of the sources and the mixing process. In this paper, we introduce a general audio source separation framework based on a library of structured source models that enable the incorporation of prior knowledge about each source via user-specifiable constraints. While this framework generalizes several existing audio source separation methods, it also allows to imagine and implement new efficient methods that were not yet reported in the literature.We first introduce the framework by describing the model structure and constraints, explaining its generality, and summarizing its algorithmic implementation using a generalized expectation-maximization algorithm. Finally, we illustrate the above-mentioned capabilities of the framework by applying it in several new and existing configurations to different source separation problems. We have released a software tool named Flexible Audio Source Separation Toolbox (FASST) implementing a baseline version of the framework in Matlab. © 2011 IEEE. Source


Allibert G.,CNRS Informatics, Signals & Systems Lab in Sophia Antipolis | Courtial E.,Institute Pluridisciplinaire Of Recherche En Ingenierie Des Systemes | Chaumette F.,CNRS Research on Informatics and Random Systems
IEEE Transactions on Robotics | Year: 2010

This paper deals with the image-based visual servoing (IBVS), subject to constraints. Robot workspace limitations, visibility constraints, and actuators limitations are addressed. These constraints are formulated into state, output, and input constraints, respectively. Based on the predictive-control strategy, the IBVS task is written into a nonlinear optimization problem in the image plane, where the constraints can be easily and explicitly taken into account. Second, the contribution of the image prediction and influence of the prediction horizon are pointed out. The image prediction is obtained due to a model. The latter can be a local model based on the interaction matrix or a nonlinear global model based on 3-D data. Its choice is discussed with respect to the constraints to be handled. Finally, simulations that were obtained with a 6-degree-of-freedom (DOF) free-flying camera highlight the potential advantages of the proposed approach with respect to the image prediction and the constraint handling. © 2010 IEEE. Source


Le Meur O.,CNRS Research on Informatics and Random Systems | Ebdelli M.,French Institute for Research in Computer Science and Automation | Guillemot C.,French Institute for Research in Computer Science and Automation
IEEE Transactions on Image Processing | Year: 2013

This paper introduces a novel framework for examplar-based inpainting. It consists in performing first the inpainting on a coarse version of the input image. A hierarchical super-resolution algorithm is then used to recover details on the missing areas. The advantage of this approach is that it is easier to inpaint low-resolution pictures than high-resolution ones. The gain is both in terms of computational complexity and visual quality. However, to be less sensitive to the parameter setting of the inpainting method, the low-resolution input picture is inpainted several times with different configurations. Results are efficiently combined with a loopy belief propagation and details are recovered by a single-image super-resolution algorithm. Experimental results in a context of image editing and texture synthesis demonstrate the effectiveness of the proposed method. Results are compared to five state-of-the-art inpainting methods. © 1992-2012 IEEE. Source


Dame A.,French Institute for Research in Computer Science and Automation | Marchand E.,CNRS Research on Informatics and Random Systems
Proceedings - IEEE International Conference on Robotics and Automation | Year: 2011

In this paper we propose a new way to achieve a navigation task for a non-holonomic vehicle. We consider an image-based navigation process. We show that it is possible to navigate along a visual path without relying on the extraction, matching and tracking of geometric visual features such as keypoint. The new proposed approach relies directly on the information (entropy) contained in the image signal. We show that it is possible to build a control law directly from the maximisation of the shared information between the current image and the next key image in the visual path. The shared information between those two images are obtained using mutual information that is known to be robust to illumination variations and occlusions. Moreover the generally complex task of features extraction and matching is avoided. Both simulations and experiments on a real vehicle are presented and show the possibilities and advantages offered by the proposed method. © 2011 IEEE. Source


Dame A.,University of Oxford | Marchand E.,CNRS Research on Informatics and Random Systems
IEEE Transactions on Image Processing | Year: 2012

In this paper, we present a direct image registration approach that uses mutual information (MI) as a metric for alignment. The proposed approach is robust and gives an accurate estimation of a set of 2-D motion parameters in real time. MI is a measure of the quantity of information shared by signals. Although it has the ability to perform robust alignment with illumination changes, multimodality, and partial occlusions, few works have proposed MI-based applications related to spatiotemporal image registration or object tracking in image sequences because of some optimization problems, which we will explain. In this paper, we propose a new optimization method that is adapted to the MI cost function and gives a practical solution for real-time tracking. We show that by refining the computation of the Hessian matrix and using a specific optimization approach, the registration results are far more robust and accurate than the existing solutions, with the computation also being cheaper. A new approach is also proposed to speed up the computation of the derivatives and keep the same optimization efficiency. To validate the advantages of the proposed approach, several experiments are performed. © 1992-2012 IEEE. Source

Discover hidden collaborations