Entity

Time filter

Source Type


Thounthong P.,King Mongkuts University of Technology Bangkok | Luksanasakul A.,King Mongkuts University of Technology Bangkok | Koseeyaporn P.,King Mongkuts University of Technology Bangkok | Davat B.,CNRS Research Group in Electrotechnics and Electronics of Nancy
IEEE Transactions on Sustainable Energy | Year: 2013

A renewable energy hybrid power plant, fed by photovoltaic (PV) and fuel cell (FC) sources with a supercapacitor (SC) storage device and suitable for distributed generation applications, is proposed herein. The PV is used as the primary source; the FC acts as a backup, feeding only the insufficiency power (steady-state) from the PV; and the SC functions as an auxiliary source and a short-term storage system for supplying the deficiency power (transient and steady-state) from the PV and the FC. For high-power applications and optimization in power converters, four-phase parallel converters are implemented for the FC converter, the PV converter, and the SC converter, respectively. A mathematical model (reduced-order model) of the FC, PV, and SC converters is described for the control of the power plant. Using the intelligent fuzzy logic controller based on the flatness property for dc grid voltage regulation, we propose a simple solution to the fast response and stabilization problems in the power system. This is the key innovative contribution of this research paper. The prototype small-scale power plant implemented was composed of a PEMFC system (1.2 kW, 46 A), a PV array (0.8 kW), and an SC module (100 F, 32 V). Experimental results validate the excellent control algorithm during load cycles. © 2010-2012 IEEE. Source


Thounthong P.,King Mongkuts University of Technology Bangkok | Tricoli P.,University of Birmingham | Davat B.,CNRS Research Group in Electrotechnics and Electronics of Nancy
International Journal of Electrical Power and Energy Systems | Year: 2014

In this paper, linear proportional-integral (PI) and nonlinear flatness-based controllers for dc link stabilization for fuel cell/supercapacitor hybrid power plants are compared. For high power applications, 4-phase parallel boost converters are implemented with a switching interleaving technique for a fuel cell (FC) converter, and 4-phase parallel bidirectional converters are implemented with a switching interleaving technique for a supercapacitor converter in the laboratory. As controls, mathematical models (reduced-order models) of the FC converter and the supercapacitor converter are given. The prototype small-scale power plant studied is composed of a PEMFC system (the Nexa Ballard FC power generator: 1.2 kW, 46 A) and a supercapacitor module (100 F, 32 V, based on Maxwell Technologies Company). Simulation (by Matlab/Simulink) and experimental results demonstrate that the nonlinear differential flatness-based control provides improved dc bus stabilization relative to a classical linear PI control method. © 2013 Elsevier Ltd. All rights reserved. Source


Didier G.,CNRS Research Group in Electrotechnics and Electronics of Nancy | Leveque J.,CNRS Research Group in Electrotechnics and Electronics of Nancy
International Journal of Electrical Power and Energy Systems | Year: 2014

This paper presents a novel approach to determine the optimal location of a resistive superconducting fault current limiter (SFCL) to improve the transient stability of an electric power grid (EPG). The presented method use the angular separation of the rotors of synchronous machines present in the power system to select the optimal location of SFCL. The selection of this optimal location is coordinated with the corresponding optimal resistive value to improve transient stability in case of short-circuit fault. To obtain a global study on the optimal placement of SFCL in case of fault, various types of short-circuits are considered (single phase grounded fault, two phases grounded fault, etc.). To evaluate the effectiveness of the proposed method, the IEEE benchmarked four-machine two-area test system is used to carry out several case studies. It is shown that the optimal location of SFCL as well as its optimal resistance value are not the same for each fault studied. A global analysis of EPG stability is presented in the paper to select only one location of the SFCL in the EPG. Results show that the optimal location of SFCL combined with its optimal resistive value reduces the angular separation of the rotors that improves effectively the stability of the EPG for any type of short-circuit. Source


Thounthong P.,King Mongkuts University of Technology Bangkok | Pierfederici S.,CNRS Research Group in Electrotechnics and Electronics of Nancy | Davat B.,CNRS Research Group in Electrotechnics and Electronics of Nancy
IEEE Transactions on Energy Conversion | Year: 2010

This paper presents an innovative control law for distributed dc generation supplied by a fuel cell (FC) (main source) and supercapacitor (auxiliary source). This kind of system is a multiconverter structure and exhibits nonlinear behavior. The operation of a multiconverter structure can lead to interactions between the controls of the converters if they are designed separately. Typically, interactions between converters are studied using impedance criteria to investigate the stability of cascaded systems. In this paper, a nonlinear control algorithm based on the flatness properties of the system is proposed. Flatness provides a convenient framework for meeting a number of performance specifications for the hybrid power source. Using the flatness property, we propose simple solutions to hybrid energy management and stabilization problems. The design controller parameters are autonomous of the operating point; moreover, interactions between converters are taken into account by the controllers, and high dynamics in disturbance rejection is achieved. To validate the proposed method, a hardware system is realized with analog circuits, and digital estimation is accomplished with a dSPACE controller. Experimental results with small-scale devices (a polymer electrolyte membrane FC of 1200 W, 46 A and a supercapacitor module of 100 F, 500 A, and 32 V) in a laboratory corroborate the excellent control scheme during a motor-drive cycle. © 2006 IEEE. Source


Lubin T.,CNRS Research Group in Electrotechnics and Electronics of Nancy | Rezzoug A.,CNRS Research Group in Electrotechnics and Electronics of Nancy
IEEE Transactions on Industrial Electronics | Year: 2015

This paper presents an approach for quick calculation of steady-state and transient performances of an axial-field eddy-current coupling. Based on a 2-D approximation of the magnetic field distribution, a simple analytical expression for the transmitted torque is first developed. This expression is valid for low slip values, which correspond to the normal working area of such devices (high efficiency). The proposed torque formula is then used to study the steady-state (constant-speed operations) and the transient performances of the coupling (small variations of the slip speed). The results are compared with those obtained from 3-D finite elements simulations and tests. It is shown that good agreements are obtained. © 1982-2012 IEEE. Source

Discover hidden collaborations