Time filter

Source Type

Raseeva G.,CNRS Orsay Institute for Molecular Science
European Physical Journal D

A model calculating the laser fields at a flat structureless surface taking into account the surface photoelectric effect is presented. The photon is p or transverse magnetic linearly polarized, continuous and its wave length is long, i.e. λvac ≥ 12.4 nm. The sharp rise of the electron density at the interface generates an atomic scale spatial dependence of the laser field. In real space and in the temporal gauge, the vector potential A of the laser is obtained as a solution of the classical Ampère-Maxwell and the material equations. The susceptibility is a product of the electron density of the material system with the surface and of the bulk tensor and non-local isotropic (TNLI) polarizability. The electron density is obtained quantum mechanically by solving the Schrödinger equation. The bulk TNLI polarizability including dispersion is calculated from a Drude-Lindhard-Kliewer model. In one dimension perpendicular to the surface the components Ax(z,ω) and Az(z,ω) of the vector potential are solutions of the Ampère- Maxwell system of two coupled integro-differential equations. The model, called vector potential from the electron density-coupled integro-differential equations (VPED-CIDE), is used here to obtain the electron escape probability from the power density absorption, the reflectance, the electron density induced by the laser and Feibelman's parameters d|| and d. Some preliminary results on aluminium surfaces are given here and in a companion paper the photoelectron spectra are calculated with results in agreement with the experiment. © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012. Source

Raseeva G.,CNRS Orsay Institute for Molecular Science
European Physical Journal D

Using the model derived in paper I [G. Raşeev, Eur. Phys. J. D 66, 167 (2012)], this work presents calculations of the photoelectron spectrum (PES) of low index aluminium surfaces in the 10-30 eV region. The laser is p or transverse magnetic linearly polarized incident on a flat structureless surface and its fields are modeled in I using the vector potential in the temporal gauge. This model uses a tensor and nonlocal isotropic (TNLI) susceptibility and solves the classical Ampère-Maxwell equation through the use of the vector potential from the electron density-coupled integro-differential equations (VPED-CIDE). The PE cross sections are the squares of the PE transition moments calculated using the VPED-CIDE vector potential function of the penetration coordinate. The PES is obtained in a one step model using either the Fermi golden rule or the Weisskopf-Wigner (WW) expressions. The WW cross section PES compares favorably with the experimental angle and energy resolved photoelectron yield (AERPY) spectrum of Levinson et al. [Phys. Rev. Lett. 43, 952 (1979)], Levinson and Plummer [Phys. Rev. B 24, 628 (1981)] for Al(001) and of Barman et al. [Phys. Rev. B 58, R4285 (1998)], Barman [Curr. Sci. 88, 54 (2005)] for Al(111) surfaces. As in the experiment, our theoretical AERPY displays the multipole surface plasmon resonance at 11.32/12.75 eV for Al(001)/Al(111), mainly due to the surface contribution |ψf |p . A|ψ| 2, the bulk plasmon minimum at 15 eV and the two single particle excitation resonances at about 16 and 22 eV. The nature of the plasmon resonances of the PES is analyzed using the reflectance, the electron density induced by the laser and Feibelman's parameter d all introduced in paper I. © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012. Source

Gauyacq J.-P.,CNRS Orsay Institute for Molecular Science | Lorente N.,Catalan Institute of Nanoscience and Nanotechnology | Novaes F.D.,Catalan Institute of Nanoscience and Nanotechnology
Progress in Surface Science

The advent of milli-kelvin scanning tunneling microscopes (STM) with inbuilt magnetic fields has opened access to the study of magnetic phenomena with atomic resolution at surfaces. In the case of single atoms adsorbed on a surface, the existence of different magnetic energy levels localized on the adsorbate is due to the breaking of the rotational invariance of the adsorbate spin by the interaction with its environment, leading to energy terms in the meV range. These structures were revealed by STM experiments in IBM Almaden in the early 2000s for atomic adsorbates on CuN surfaces. The experiments consisted in the study of the changes in conductance caused by inelastic tunneling of electrons (IETS, inelastic electron tunneling spectroscopy). Manganese and Iron adatoms were shown to have different magnetic anisotropies induced by the substrate. More experiments by other groups followed up, showing that magnetic excitations could be detected in a variety of systems: e.g. complex organic molecules showed that their magnetic anisotropy was dependent on the molecular environment, piles of magnetic molecules showed that they interact via intermolecular exchange interaction, spin waves were excited on ferromagnetic surfaces and in Mn chains, and magnetic impurities have been analyzed on semiconductors. These experiments brought up some intriguing questions: the efficiency of magnetic excitations was very high, the excitations could or could not involve spin flip of the exciting electron and singular-like behavior was sometimes found at the excitation thresholds. These facts called for extended theoretical analysis; perturbation theories, sudden-approximation approaches and a strong coupling scheme successfully explained most of the magnetic inelastic processes. In addition, many-body approaches were also used to decipher the interplay between inelastic processes and the Kondo effect. Spin torque transfer has been shown to be effective in changing spin orientations of an adsorbate in theoretical works, and soon after it was shown experimentally. More recently, the previously mentioned strong coupling approach was extended to treat the excitation of spin waves in atomic chains and the ubiquitous role of electron-hole pair creation in de-exciting spins on surfaces has been analyzed. This review article expounds these works, presenting the theoretical approach by the authors while trying to thoroughly review parallel theoretical and experimental works. © 2012 Elsevier Ltd. All rights reserved. Source

Zehnacker A.,CNRS Orsay Institute for Molecular Science
International Reviews in Physical Chemistry

This review focuses on chirality effects in spectroscopy and photophysics of chiral molecules or protonated ions, and their weakly bound complexes, isolated in the gas phase. Low-temperature studies in jet-cooled conditions allow disentangling the different interactions at play and shed light on the ancillary interactions responsible for chiral recognition, like OH...π or CH...π, which would be blurred at room temperature. The consequences of these interactions on chiral recognition in condensed phase are described, as well as the influence of higher energy conformers, which can be accessed in room-temperature experiments. The role of kinetic effects and solvation in jet-cooled experiments is discussed. Last, examples of dramatic chirality effects in photo-induced dissociation are given. © 2014 Taylor & Francis. Source

Schliesser A.,Ecole Polytechnique Federale de Lausanne | Schliesser A.,Max Planck Institute of Quantum Optics | Picque N.,Max Planck Institute of Quantum Optics | Picque N.,Ludwig Maximilians University of Munich | And 3 more authors.
Nature Photonics

Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science. © 2012 Macmillan Publishers Limited. All rights reserved. Source

Discover hidden collaborations