CNRS Laboratory of Molecular Electrochemistry

Paris, France

CNRS Laboratory of Molecular Electrochemistry

Paris, France
Time filter
Source Type

Anne A.,CNRS Laboratory of Molecular Electrochemistry | Demaille C.,CNRS Laboratory of Molecular Electrochemistry
Langmuir | Year: 2012

In the present work, exact kinetic equations describing the action of an enzyme in solution on a substrate attached to a surface have been derived in the framework of the Michaelis-Menten mechanism but without resorting to the often-used steady-state approximation. The here-derived kinetic equations are cast in a workable format, allowing us to introduce a simple and universal procedure for the quantitative analysis of enzyme surface kinetics that is valid for any kinetic situation. The results presented here should allow experimentalists studying the kinetics of enzyme action on immobilized substrates to analyze their data in a perfectly rigorous way. © 2012 American Chemical Society.

Schaming D.,CNRS Laboratory of Molecular Electrochemistry | Renault C.,CNRS Laboratory of Molecular Electrochemistry | Tucker R.T.,University of Alberta | Lau-Truong S.,University of Paris Pantheon Sorbonne | And 5 more authors.
Langmuir | Year: 2012

3D nanostructured transparent indium tin oxide (ITO) electrodes prepared by glancing angle deposition (GLAD) were used for the spectroelectrochemical characterization of cytochrome c (Cyt c) and neuroglobin (Nb). These small hemoproteins, involved as electron-transfer partners in the prevention of apoptosis, are oppositely charged at physiological pH and can each be adsorbed within the ITO network under different pH conditions. The resulting modified electrodes were investigated by UV-visible absorption spectroscopy coupled with cyclic voltammetry. By using nondenaturating adsorption conditions, we demonstrate that both proteins are capable of direct electron transfer to the conductive ITO surface, sharing apparent standard potentials similar to those reported in solution. Preservation of the 3D protein structure upon adsorption was confirmed by resonance Raman (rR) spectroscopy. Analysis of the derivative cyclic voltabsorptograms (DCVA) monitored either in the Soret or the Q bands at scan rates up to 1 V s-1 allowed us to investigate direct interfacial electron transfer kinetics. From the DCVA shape and scan rate dependences, we conclude that the interaction of Cyt c with the ITO surface is more specific than Nb, suggesting an oriented adsorption of Cyt c and a random adsorption of Nb on the ITO surface. At the same time, Cyt c appears more sensitive to the experimental adsorption conditions, and complete denaturation of Cyt c may occur as evidenced from cross-correlation of rR spectroscopy and spectroelectrochemistry. © 2012 American Chemical Society.

Gatard S.,CNRS Paris Institute of Molecular Chemistry | Blanchard S.,CNRS Paris Institute of Molecular Chemistry | Schollhora B.,CNRS Laboratory of Molecular Electrochemistry | Gouzerh P.,CNRS Paris Institute of Molecular Chemistry | And 3 more authors.
Chemistry - A European Journal | Year: 2010

The electroactive benzothiazole hydrazone AMBTH-H2, a new member of the 2,2'-azino-bis(N-alkylbenzothiazole) family, was synthesised in a five-step procedure and characterised by using X-ray diffraction along with two intermediates and the Nmethylbenzothiazole hydrazone MBTH-H2. Both AMBTH-H2 and MBTH-H2 were coupled to [Mo6O 19]2- in acetonitrile in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine to give two new diazoalkane-hexamolybdates, which were isolated as tetrabutylammonium salts and characterised by using IR, UV/Vis and NMR spectroscopies, cyclic voltammetry and, for one of them, X-ray diffraction. The packing arrangement molecules in crystals of AMBTH-H2, the redox features of the AMBTH-hexamolybdate hybrid together with a good electronic communication between the organic n system and the molybdenum centres make these compounds very promising blocks for the synthesis of conducting molecular materials. © 2010 Wiley-VCH. Verlag GmbH & Co. KGaA, Weinheim.

Challier L.,University of Paris Pantheon Sorbonne | Miranda-Castro R.,University of Paris Pantheon Sorbonne | Miranda-Castro R.,CNRS Laboratory of Molecular Electrochemistry | Marchal D.,CNRS Laboratory of Molecular Electrochemistry | And 3 more authors.
Journal of the American Chemical Society | Year: 2013

Here, we demonstrate a new generic, affordable, simple, versatile, sensitive, and easy-to-implement electrochemical kinetic method for monitoring, in real time, the progress of a chemical or biological reaction in a microdrop of a few tens of microliters, with a kinetic time resolution of ca. 1 s. The methodology is based on a fast injection and mixing of a reactant solution (1-10 μL) in a reaction droplet (15-50 μL) rapidly rotated over the surface of a nonmoving working electrode and on the recording of the ensuing transient faradaic current associated with the transformation of one of the components. Rapid rotation of the droplet was ensured mechanically by a rotating rod brought in contact atop the droplet. This simple setup makes it possible to mix reactants efficiently and rotate the droplet at a high spin rate, hence generating a well-defined hydrodynamic steady-state convection layer at the underlying stationary electrode. The features afforded by this new kinetic method were investigated for three different reaction schemes: (i) the chemical oxidative deprotection of a boronic ester by H2O2, (ii) a biomolecular binding recognition between a small target and an aptamer, and (iii) the inhibition of the redox-mediated catalytic cycle of horseradish peroxidase (HRP) by its substrate H2O2. For the small target/aptamer binding reaction, the kinetic and thermodynamic parameters were recovered from rational analysis of the kinetic plots, whereas for the HRP catalytic/inhibition reaction, the experimental amperometric kinetic plots were reproduced from numerical simulations. From the best fits of simulations to the experimental data, the kinetics rate constants primarily associated with the inactivation/reactivation pathways of the enzyme were retrieved. The ability to perform kinetics in microliter-size samples makes this methodology particularly attractive for reactions involving low-abundance or expensive reagents. © 2013 American Chemical Society.

Huang K.,CNRS Laboratory of Molecular Electrochemistry | Anne A.,CNRS Laboratory of Molecular Electrochemistry | Bahri M.A.,CNRS Laboratory of Molecular Electrochemistry | Demaille C.,CNRS Laboratory of Molecular Electrochemistry
ACS Nano | Year: 2013

Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ∼20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules. © 2013 American Chemical Society.

Challier L.,University of Paris Pantheon Sorbonne | Mavre F.,CNRS Laboratory of Molecular Electrochemistry | Moreau J.,CNRS Laboratory of Molecular Electrochemistry | Fave C.,University of Paris Pantheon Sorbonne | And 5 more authors.
Analytical Chemistry | Year: 2012

A new electrochemical methodology is reported for monitoring in homogeneous solution the enantiospecific binding of a small chiral analyte to an aptamer. The principle relies on the difference of diffusion rates between the targeted molecule and the aptamer/target complex, and thus on the ability to more easily electrochemically detect the former over the latter in a homogeneous solution. This electrochemical detection strategy is significant because, in contrast to the common laborious and time-consuming heterogeneous binding approaches, it is based on a simple and fast homogeneous binding assay which does not call for an aptamer conformational change upon ligand binding. The methodology is here exemplified with the specific chiral recognition of trace amounts of l- or d-tyrosinamide by a 49-mer d- or l-deoxyribooligonucleotide receptor. Detection as low as 0.1% of the minor enantiomer in a nonracemic mixture can be achieved in a very short analysis time (<1 min). The assay finally combines numerous attractive features including simplicity, rapidity, low cost, flexibility, low volume samples (few microliters), and homogeneous format. © 2012 American Chemical Society.

Chow K.-F.,University of Texas at Austin | Chang B.-Y.,University of Texas at Austin | Zaccheo B.A.,University of Texas at Austin | Mavre F.,CNRS Laboratory of Molecular Electrochemistry | Crooks R.M.,University of Texas at Austin
Journal of the American Chemical Society | Year: 2010

Here we report a new type of sensing platform that is based on electrodissolution of a metallic bipolar electrode (BPE). When the target DNA binds to the capture probe at the cathodic pole of the BPE, it triggers the oxidation and dissolution of Ag metal present at the anodic pole. The loss of Ag is easily detectable with the naked eye or a magnifying glass and provides a permanent record of the electrochemical history of the electrode. More importantly, the decrease in the length of the BPE can be directly correlated to the number of electrons passing through the BPE and hence to the sensing reaction at the cathode. © 2010 American Chemical Society.

Moreau J.,University of Paris Pantheon Sorbonne | Challier L.,University of Paris Pantheon Sorbonne | Lalaoui N.,University of Paris Pantheon Sorbonne | Mavre F.,CNRS Laboratory of Molecular Electrochemistry | And 4 more authors.
Chemistry - A European Journal | Year: 2014

A series of redox-labeled L-tyrosinamide (L-Tym) derivatives was prepared and the nature of the functional group and the chain length of the spacer were systematically varied in a step-by-step affinity optimization process of the tracer for the L-Tym aptamer. The choice of the labeling position on L-Tym proved to be crucial for the molecular recognition event, which could be monitored by cyclic voltammetry and is based on the different diffusion rates of free and bound targets in solution. From this screening approach an efficient electroactive tracer emerged. Comparable dissociation constants Kd were obtained for the unlabeled and labeled targets in direct or competitive binding assays. The enantiomeric tracer was prepared and its enantioselective recognition by the corresponding anti-D-Tym aptamer was demonstrated. The access to both enantiomeric tracer molecules opens the door for the development of one-pot determination of the enantiomeric excess when using different labels with well-separated redox potentials for each enantiomer. Trace compounds: Redox tracers have been synthesized for enantioselective electrochemical ligand binding assays by relying on the combined use of an oligonucleotide-aptamer receptor with the detection of the redox label. A rational step-by-step optimization procedure has been developed leading to a redox-labeled L-tyrosinamide derivative (see figure) conserving the high affinity towards the aptamer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Durand F.,CNRS Paul Pascal Research Center | Limoges B.,CNRS Laboratory of Molecular Electrochemistry | Mano N.,CNRS Paul Pascal Research Center | Mavre F.,CNRS Laboratory of Molecular Electrochemistry | And 2 more authors.
Journal of the American Chemical Society | Year: 2011

Thanks to its insensitivity to dioxygen and to its good catalytic reactivity, and in spite of its poor substrate selectivity, quinoprotein glucose dehydrogenase (PQQ-GDH) plays a prominent role among the redox enzymes that can be used for analytical purposes, such as glucose detection, enzyme-based bioaffinity assays, and the design of biofuel cells. A detailed kinetic analysis of the electrochemical catalytic responses, leading to an unambiguous characterization of each individual steps, seems a priori intractable in view of the interference, on top of the usual ping-pong mechanism, of substrate inhibition and of cooperativity effects between the two identical subunits of the enzyme. Based on simplifications suggested by extended knowledge previously acquired by standard homogeneous kinetics, it is shown that analysis of the catalytic responses obtained by means of electrochemical nondestructive techniques, such as cyclic voltammetry, with ferrocene methanol as a mediator, does allow a full characterization of all individual steps of the catalytic reaction, including substrate inhibition and cooperativity and, thus, allows to decipher the reason that makes the enzyme more efficient when the neighboring subunit is filled with a glucose molecule. As a first practical illustration of this electrochemical approach, comparison of the native enzyme responses with those of a mutant (in which the asparagine amino acid in position 428 has been replaced by a cysteine residue) allowed identification of the elementary steps that makes the mutant type more efficient than the wild type when cooperativity between the two subunits takes place, which is observed at large mediator and substrate concentrations. A route is thus opened to structure-reactivity relationships and therefore to mutagenesis strategies aiming at better performances in terms of catalytic responses and/or substrate selectivity. © 2011 American Chemical Society.

Ratel M.,University of Montréal | Provencher-Girard A.,University of Montréal | Zhao S.S.,University of Montréal | Breault-Turcot J.,University of Montréal | And 8 more authors.
Analytical Chemistry | Year: 2013

Ionic liquid self-assembled monolayers (SAM) were designed and applied for binding streptavidin, promoting affinity biosensing and enzyme activity on gold surfaces of sensors. The synthesis of 1-((+)-biotin)pentanamido)propyl)-3-(12- mercaptododecyl)-imidazolium bromide, a biotinylated ionic liquid (IL-biotin), which self-assembles on gold film, afforded streptavidin sensing with surface plasmon resonance (SPR). The IL-biotin-SAM efficiently formed a full streptavidin monolayer. The synthesis of 1-(carboxymethyl)-3-(mercaptododecyl)- imidazoliumbromide, a carboxylated IL (IL-COOH), was used to immobilize anti-IgG to create an affinity biosensor. The IL-COOH demonstrated efficient detection of IgG in the nanomolar concentration range, similar to the alkylthiols SAM and PEG. In addition, the IL-COOH demonstrated low fouling in crude serum, to a level equivalent to PEG. The IL-COOH was further modified with N,N′-bis (carboxymethyl)-l-lysine hydrate to bind copper ions and then, chelate histidine-tagged biomolecules. Human dihydrofolate reductase (hDHFR) was chelated to the modified IL-COOH. By monitoring enzyme activity in situ on the SPR sensor, it was revealed that the IL-COOH SAM improved the activity of hDHFR by 24% in comparison to classical SAM. Thereby, IL-SAM has been synthesized and successfully applied to three important biosensing schemes, demonstrating the advantages of this new class of monolayers. © 2013 American Chemical Society.

Loading CNRS Laboratory of Molecular Electrochemistry collaborators
Loading CNRS Laboratory of Molecular Electrochemistry collaborators